• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge

    Author(s)
    Wang, Yali
    Wang, Dongbo
    Liu, Yiwen
    Wang, Qilin
    Chen, Fei
    Yang, Qi
    Li, Xiaoming
    Zeng, Guangming
    Li, Hailong
    Griffith University Author(s)
    Wang, Qilin
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial ...
    View more >
    Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production.
    View less >
    Journal Title
    Water Research
    Volume
    127
    DOI
    https://doi.org/10.1016/j.watres.2017.09.062
    Subject
    Environmentally sustainable engineering
    Global and planetary environmental engineering
    Publication URI
    http://hdl.handle.net/10072/368746
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander