• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Experimental Detritus Manipulations Unite Surface and Cave Stream Ecosystems Along a Common Energy Gradient

    Author(s)
    Venarsky, Michael
    Benstead, Jonathan P.
    Huryn, Alexander D.
    Hunstsman, Brock M.
    Edmonds, Jennifer W.
    Findlay, Robert H.
    Wallace, J. Bruce
    Griffith University Author(s)
    Venarsky, Michael P.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Subsidies of detritus from donor habitats are important energy sources for many ecosystems, but understanding their role in structuring recipient food webs requires comparative experimental studies along the full spectrum of detrital fluxes. Here we report results from an experimental addition of maize (Zea mays L.) litter to a detritus-poor cave stream ecosystem, which we then compare with analogous, past experiments using detritus-rich surface stream ecosystems that similarly have detritus-based food webs and extremely low in situ primary production. Bulk-tissue and compound-specific stable isotope analyses showed that ...
    View more >
    Subsidies of detritus from donor habitats are important energy sources for many ecosystems, but understanding their role in structuring recipient food webs requires comparative experimental studies along the full spectrum of detrital fluxes. Here we report results from an experimental addition of maize (Zea mays L.) litter to a detritus-poor cave stream ecosystem, which we then compare with analogous, past experiments using detritus-rich surface stream ecosystems that similarly have detritus-based food webs and extremely low in situ primary production. Bulk-tissue and compound-specific stable isotope analyses showed that maize litter carbon (C) was rapidly assimilated by microbes and transferred via successive trophic levels to the top of the cave stream food web (omnivorous crayfishes and predatory salamanders). All trophic levels increased in abundance and biomass, but only facultative cave taxa, that is those also found in surface streams, contributed to this numerical response. The lack of response by obligate cave species presumably occurred because evolutionary trade-offs associated with adaptations to low-C environments constrained their population-level responses during the one-year period of the litter addition. Comparison of the responses of the cave community with the analogous litter manipulation experiments in surface streams showed strong convergence in the functional relationship between invertebrate and detritus biomass (R 2 = 0.72, P < 0.0001). Our results suggest that these seemingly disparate stream food webs lie along a single, common gradient of detritus supply, occupied at its extreme minimum by communities of obligate cave taxa adapted to low-energy environments.
    View less >
    Journal Title
    Ecosystems
    DOI
    https://doi.org/10.1007/s10021-017-0174-4
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Environmental Sciences not elsewhere classified
    Environmental Sciences
    Biological Sciences
    Publication URI
    http://hdl.handle.net/10072/368884
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander