Event-Triggered Asynchronous Guaranteed Cost Control for Markov Jump Discrete-Time Neural Networks With Distributed Delay and Channel Fading
Author(s)
Yan, Huaicheng
Zhang, Hao
Yang, Fuwen
Zhan, Xisheng
Peng, Chen
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
This paper is concerned with the guaranteed cost control problem for a class of Markov jump discrete-time neural networks (NNs) with event-triggered mechanism, asynchronous jumping, and fading channels. The Markov jump NNs are introduced to be close to reality, where the modes of the NNs and guaranteed cost controller are determined by two mutually independent Markov chains. The asynchronous phenomenon is considered, which increases the difficulty of designing required mode-dependent controller. The event-triggered mechanism is designed by comparing the relative measurement error with the last triggered state at the process ...
View more >This paper is concerned with the guaranteed cost control problem for a class of Markov jump discrete-time neural networks (NNs) with event-triggered mechanism, asynchronous jumping, and fading channels. The Markov jump NNs are introduced to be close to reality, where the modes of the NNs and guaranteed cost controller are determined by two mutually independent Markov chains. The asynchronous phenomenon is considered, which increases the difficulty of designing required mode-dependent controller. The event-triggered mechanism is designed by comparing the relative measurement error with the last triggered state at the process of data transmission, which is used to eliminate dispensable transmission and reduce the networked energy consumption. In addition, the signal fading is considered for the effect of signal reflection and shadow in wireless networks, which is modeled by the novel Rice fading models. Some novel sufficient conditions are obtained to guarantee that the closed-loop system reaches a specified cost value under the designed jumping state feedback control law in terms of linear matrix inequalities. Finally, some simulation results are provided to illustrate the effectiveness of the proposed method.
View less >
View more >This paper is concerned with the guaranteed cost control problem for a class of Markov jump discrete-time neural networks (NNs) with event-triggered mechanism, asynchronous jumping, and fading channels. The Markov jump NNs are introduced to be close to reality, where the modes of the NNs and guaranteed cost controller are determined by two mutually independent Markov chains. The asynchronous phenomenon is considered, which increases the difficulty of designing required mode-dependent controller. The event-triggered mechanism is designed by comparing the relative measurement error with the last triggered state at the process of data transmission, which is used to eliminate dispensable transmission and reduce the networked energy consumption. In addition, the signal fading is considered for the effect of signal reflection and shadow in wireless networks, which is modeled by the novel Rice fading models. Some novel sufficient conditions are obtained to guarantee that the closed-loop system reaches a specified cost value under the designed jumping state feedback control law in terms of linear matrix inequalities. Finally, some simulation results are provided to illustrate the effectiveness of the proposed method.
View less >
Journal Title
IEEE Transactions on Neural Networks and Learning Systems
Note
This publication has been entered into Griffith Research Online as an Advanced Online Version.
Subject
Signal processing