• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Using isotope labeling to partition sources of CO2 efflux in newly established mangrove seedlings

    Thumbnail
    View/Open
    OuyangPUB4523.pdf (623.0Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Ouyang, Xiaoguang
    Lee, Shing Yip
    Connolly, Rod M
    Griffith University Author(s)
    Connolly, Rod M.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Carbon dioxide (CO2) flux is a critical component of the global C budget. While CO2 flux has been increasingly studied in mangroves, better partitioning of components contributing to the overall flux will be useful in constraining C budgets. Little information is available on how CO2 flux may vary with forest age and conditions. We used a combination of 13C stable isotope labeling and closed chambers to partition CO2 efflux from the seedlings of the widespread mangrove Avicennia marina in laboratory microcosms, with a focus on sediment CO2 efflux in establishing forests. We showed that (1) above-ground part of plants were ...
    View more >
    Carbon dioxide (CO2) flux is a critical component of the global C budget. While CO2 flux has been increasingly studied in mangroves, better partitioning of components contributing to the overall flux will be useful in constraining C budgets. Little information is available on how CO2 flux may vary with forest age and conditions. We used a combination of 13C stable isotope labeling and closed chambers to partition CO2 efflux from the seedlings of the widespread mangrove Avicennia marina in laboratory microcosms, with a focus on sediment CO2 efflux in establishing forests. We showed that (1) above-ground part of plants were the chief component of overall CO2 efflux; and (2) the degradation of sediment organic matter was the major component of sediment CO2 efflux, followed by root respiration and litter decomposition, as determined using isotope mixing models. There was a significant relationship between C isotope values of CO2 released at the sediment–air interface and both root respiration and sediment organic matter decomposition. These relative contributions of different components to overall and sediment CO2 efflux can be used in partitioning of the sources of overall respiration and sediment C mineralization in establishing mangroves.
    View less >
    Journal Title
    Limnology and Oceanography
    DOI
    https://doi.org/10.1002/lno.10663
    Copyright Statement
    © 2017 The Authors Limnology and Oceanography published by Wiley Periodicals, Inc.on behalf of Association for the Sciences of Limnology and Oceanography. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
    Subject
    Earth sciences
    Biological oceanography
    Environmental sciences
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/369052
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander