PDD Graph: Bridging Electronic Medical Records and Biomedical Knowledge Graphs via Entity Linking
Author(s)
Wang, Meng
Zhang, Jiaheng
Liu, Jun
Hu, Wei
Wang, Sen
Li, Xue
Liu, Wenqiang
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
Electronic medical records contain multi-format electronic medical data that consist of an abundance of medical knowledge. Facing with patient’s symptoms, experienced caregivers make right medical decisions based on their professional knowledge that accurately grasps relationships between symptoms, diagnosis, and corresponding treatments. In this paper, we aim to capture these relationships by constructing a large and high-quality heterogeneous graph linking patients, diseases, and drugs (PDD) in EMRs. Specifically, we propose a novel framework to extract important medical entities from MIMIC-III (Medical Information Mart ...
View more >Electronic medical records contain multi-format electronic medical data that consist of an abundance of medical knowledge. Facing with patient’s symptoms, experienced caregivers make right medical decisions based on their professional knowledge that accurately grasps relationships between symptoms, diagnosis, and corresponding treatments. In this paper, we aim to capture these relationships by constructing a large and high-quality heterogeneous graph linking patients, diseases, and drugs (PDD) in EMRs. Specifically, we propose a novel framework to extract important medical entities from MIMIC-III (Medical Information Mart for Intensive Care III) and automatically link them with the existing biomedical knowledge graphs, including ICD-9 ontology and DrugBank. The PDD graph presented in this paper is accessible on the Web via the SPARQL endpoint, and provides a pathway for medical discovery and applications, such as effective treatment recommendations.
View less >
View more >Electronic medical records contain multi-format electronic medical data that consist of an abundance of medical knowledge. Facing with patient’s symptoms, experienced caregivers make right medical decisions based on their professional knowledge that accurately grasps relationships between symptoms, diagnosis, and corresponding treatments. In this paper, we aim to capture these relationships by constructing a large and high-quality heterogeneous graph linking patients, diseases, and drugs (PDD) in EMRs. Specifically, we propose a novel framework to extract important medical entities from MIMIC-III (Medical Information Mart for Intensive Care III) and automatically link them with the existing biomedical knowledge graphs, including ICD-9 ontology and DrugBank. The PDD graph presented in this paper is accessible on the Web via the SPARQL endpoint, and provides a pathway for medical discovery and applications, such as effective treatment recommendations.
View less >
Journal Title
Lecture Notes in Computer Science
Volume
10588
Subject
Other information and computing sciences not elsewhere classified