• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Atypical Callosal Morphology in Children with Speech Sound Disorder

    Author(s)
    Luders, Eileen
    Kurth, Florian
    Pigdon, Lauren
    Conti-Ramsden, Gina
    Reilly, Sheena
    Morgan, Angela T
    Griffith University Author(s)
    Reilly, Sheena
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Speech sound disorder (SSD) is common, yet its neurobiology is poorly understood. Recent studies indicate atypical structural and functional anomalies either in one hemisphere or both hemispheres, which might be accompanied by alterations in inter-hemispheric connectivity. Indeed, abnormalities of the corpus callosum – the main fiber tract connecting the two hemispheres – have been linked to speech and language deficits in associated disorders, such as stuttering, dyslexia, aphasia, etc. However, there is a dearth of studies examining the corpus callosum in SSD. Here, we investigated whether a sample of 18 children with SSD ...
    View more >
    Speech sound disorder (SSD) is common, yet its neurobiology is poorly understood. Recent studies indicate atypical structural and functional anomalies either in one hemisphere or both hemispheres, which might be accompanied by alterations in inter-hemispheric connectivity. Indeed, abnormalities of the corpus callosum – the main fiber tract connecting the two hemispheres – have been linked to speech and language deficits in associated disorders, such as stuttering, dyslexia, aphasia, etc. However, there is a dearth of studies examining the corpus callosum in SSD. Here, we investigated whether a sample of 18 children with SSD differed in callosal morphology from 18 typically developing children carefully matched for age. Significantly reduced dimensions of the corpus callosum, particularly in the callosal anterior third, were observed in children with SSD. These findings indicating pronounced callosal aberrations in SSD make an important contribution to an understudied field of research and may suggest that SSD is accompanied by atypical lateralization of speech and language function.
    View less >
    Journal Title
    Neuroscience
    Volume
    367
    DOI
    https://doi.org/10.1016/j.neuroscience.2017.10.039
    Subject
    Neurosciences
    Psychology
    Cognitive and computational psychology
    Linguistics not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/369364
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander