• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Recovery of soil properties and functions in different rainforest restoration pathways

    Author(s)
    Paul, Miriam
    Catterall, Carla P
    Pollard, Peter C
    Kanowski, John
    Griffith University Author(s)
    Catterall, Carla P.
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Rainforests in the tropics and subtropics are declining rapidly, leading to significant changes in soil physical and chemical characteristics and biochemical cycles that connect vegetation and soil. Effects of such changes on soil carbon (C) and nitrogen (N) pools are still poorly understood and contradictory results have been reported in different studies. We studied changes in C and N dynamics associated with deforestation and reforestation in the Big Scrub region of subtropical eastern Australia, where over 99% of the former rainforest cover was converted by European settlers for pasture or agriculture. In this area, the ...
    View more >
    Rainforests in the tropics and subtropics are declining rapidly, leading to significant changes in soil physical and chemical characteristics and biochemical cycles that connect vegetation and soil. Effects of such changes on soil carbon (C) and nitrogen (N) pools are still poorly understood and contradictory results have been reported in different studies. We studied changes in C and N dynamics associated with deforestation and reforestation in the Big Scrub region of subtropical eastern Australia, where over 99% of the former rainforest cover was converted by European settlers for pasture or agriculture. In this area, the most common reforestation pathways are tree-planting for ecological restoration purposes, autogenic regrowth dominated by the invasive tree species camphor laurel (Cinnamomum camphora), and management of this regrowth to accelerate the development of a more native tree community. Nineteen soil properties were measured at 25 sites, five within each of: remnant rainforest, pasture, ecological restoration plantings 10-15-year old, camphor laurel regrowth 20-40-year old, and rainforest regrowth 3-6 years after poisoning of camphor trees within older regrowth. Of eight components of N cycling measured, four differed significantly between site-types: nitrate-N, plant-available nitrate-N and nitrification rates were highest in rainforest and lowest in pasture, with revegetated sites showing intermediate levels; while plant-available ammonium-N showed a reverse pattern. Among revegetated sites, camphor-dominated regrowth showed slightly less regeneration of N dynamics than treated camphor and replanted sites. Among soil attributes related to the soil C cycle and soil microbial activity, there was little variation with deforestation or reforestation. Four of five other soil attributes (pH, bulk density, fine root biomass, and plant-available phosphate-P) showed significant variation among site-types, with specific patterns varying. All three reforestation pathways were able to restore soil properties to varying degrees, although the rate of recovery was lowest in untreated camphor regrowth.
    View less >
    Journal Title
    Forest Ecology and management
    Volume
    259
    Issue
    10
    DOI
    https://doi.org/10.1016/j.foreco.2010.02.019
    Subject
    Environmental sciences
    Biological sciences
    Agricultural, veterinary and food sciences
    Forestry sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/36939
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander