• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Leaf litter additions enhance stream metabolism, denitrification, and restoration prospects for agricultural catchments

    Thumbnail
    View/Open
    O’BRIENPUB4559.pdf (2.241Mb)
    File version
    Version of Record (VoR)
    Author(s)
    O'Brien, Jonathan M
    Warburton, Helen J
    Graham, S Elizabeth
    Franklin, Hannah M
    Febria, Catherine M
    Hogsden, Kristy L
    Harding, Jon S
    McIntosh, Angus R
    Griffith University Author(s)
    Franklin, Hannah M.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Globally intensive agriculture has both increased nitrogen pollution in adjacent waterways and decreased availability of terrestrially derived carbon frequently used by stream heterotrophs in nitrogen cycling. We tested the potential for carbon additions via leaf litter from riparian restoration plantings to act as a tool for enhancing denitrification in agricultural streams with relatively high concentrations of nitrate (1.3–8.1 mg/L) in Canterbury, New Zealand. Experimental additions of leaf packs (N = 200, mass = 350 g each) were carried out in 200-m reaches of three randomly selected treatment streams and compared to ...
    View more >
    Globally intensive agriculture has both increased nitrogen pollution in adjacent waterways and decreased availability of terrestrially derived carbon frequently used by stream heterotrophs in nitrogen cycling. We tested the potential for carbon additions via leaf litter from riparian restoration plantings to act as a tool for enhancing denitrification in agricultural streams with relatively high concentrations of nitrate (1.3–8.1 mg/L) in Canterbury, New Zealand. Experimental additions of leaf packs (N = 200, mass = 350 g each) were carried out in 200-m reaches of three randomly selected treatment streams and compared to three control streams receiving no additional leaf carbon. Litter additions increased ecosystem respiration in treatment streams compared to control streams but did not affect gross primary production, indicating the carbon addition boosted heterotrophic activity, a useful gauge of the activities of microbes involved in denitrification. Bench-top assays with denitrifying enzymes using acetylene inhibition techniques also suggested that the coarse particulate organic matter added from leaf packs would have provided substrates suitable for high rates of denitrification. Quantifying denitrification directly in experimental reaches by open-channel methods based on membrane inlet mass spectrophotometry indicated that denitrification was around three times higher in treatment streams where litter was added compared to control streams. We further assessed the potential for riparian plantings to reduce large-scale downstream nitrogen losses through increasing in-stream denitrification by modeling the effects of increasing riparian vegetation cover on nitrogen fluxes. Here, we combined estimates of in-stream ecosystem processes derived from our experiment with a network model of catchment-scale nitrogen retention and removal based on empirical measurements of nitrogen flux in this typical agricultural catchment. Our model indicated leaf inputs associated with increased riparian cover had the potential to double the catchment level rate of denitrification, offering a promising way to mitigate nitrate pollution in agricultural streams. Altogether, our study indicates that overcoming carbon limitation and boosting heterotrophic processes will be important for reducing nitrogen pollution in agricultural streams and that combining empirical approaches for predictions suggests there are large potential benefits from riparian re-vegetation efforts at catchment scales.
    View less >
    Journal Title
    Ecosphere
    Volume
    8
    Issue
    11
    DOI
    https://doi.org/10.1002/ecs2.2018
    Copyright Statement
    © 2017 O’Brien et al. This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
    Subject
    Ecology
    Ecology not elsewhere classified
    Zoology
    Agriculture, land and farm management
    Ecological applications
    Publication URI
    http://hdl.handle.net/10072/369393
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander