• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • 2D–EM clustering approach for high-dimensional data through folding feature vectors

    Thumbnail
    View/Open
    SharmaPUB5515.pdf (1.531Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Sharma, Alok
    Kamola, Piotr J
    Tsunoda, Tatsuhiko
    Griffith University Author(s)
    Sharma, Alok
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Background: Clustering methods are becoming widely utilized in biomedical research where the volume and complexity of data is rapidly increasing. Unsupervised clustering of patient information can reveal distinct phenotype groups with different underlying mechanism, risk prognosis and treatment response. However, biological datasets are usually characterized by a combination of low sample number and very high dimensionality, something that is not adequately addressed by current algorithms. While the performance of the methods is satisfactory for low dimensional data, increasing number of features results in either deterioration ...
    View more >
    Background: Clustering methods are becoming widely utilized in biomedical research where the volume and complexity of data is rapidly increasing. Unsupervised clustering of patient information can reveal distinct phenotype groups with different underlying mechanism, risk prognosis and treatment response. However, biological datasets are usually characterized by a combination of low sample number and very high dimensionality, something that is not adequately addressed by current algorithms. While the performance of the methods is satisfactory for low dimensional data, increasing number of features results in either deterioration of accuracy or inability to cluster. To tackle these challenges, new methodologies designed specifically for such data are needed. Results: We present 2D–EM, a clustering algorithm approach designed for small sample size and high-dimensional datasets. To employ information corresponding to data distribution and facilitate visualization, the sample is folded into its two-dimension (2D) matrix form (or feature matrix). The maximum likelihood estimate is then estimated using a modified expectation-maximization (EM) algorithm. The 2D–EM methodology was benchmarked against several existing clustering methods using 6 medically-relevant transcriptome datasets. The percentage improvement of Rand score and adjusted Rand index compared to the best performing alternative method is up to 21.9% and 155.6%, respectively. To present the general utility of the 2D–EM method we also employed 2 methylome datasets, again showing superior performance relative to established methods. Conclusions: The 2D–EM algorithm was able to reproduce the groups in transcriptome and methylome data with high accuracy. This build confidence in the methods ability to uncover novel disease subtypes in new datasets. The design of 2D–EM algorithm enables it to handle a diverse set of challenging biomedical dataset and cluster with higher accuracy than established methods. MATLAB implementation of the tool can be freely accessed online (http://www.riken.jp/en/research/labs/ims/med_sci_math or http://www.alok-ai-lab.com/).
    View less >
    Journal Title
    BMC Bioinformatics
    Volume
    18(Suppl 16)
    Issue
    547
    DOI
    https://doi.org/10.1186/s12859-017-1970-8
    Copyright Statement
    © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
    Subject
    Mathematical sciences
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/369839
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander