• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Google as a cancer control tool in Queensland

    Thumbnail
    View/Open
    HuangPUB5517.pdf (1.155Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Huang, Xiaodong
    Baade, Peter
    Youlden, Danny R
    Youl, Philippa H
    Hu, Wenbiao
    Kimlin, Michael G
    Griffith University Author(s)
    Youl, Philippa
    Youlden, Danny R.
    Baade, Peter D.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Background: Recent advances in methodologies utilizing “big data” have allowed researchers to investigate the use of common internet search engines as a real time tool to track disease. Little is known about its utility with tracking cancer incidence. This study aims to investigate the potential correlates of monthly internet search volume indexes (SVIs) and observed monthly age standardised incidence rates (ASRs) for breast cancer, colorectal cancer, melanoma and prostate cancer. Methods: The monthly ASRs for the four cancers in Queensland were calculated using data from the Queensland Cancer Registry between January 2006 ...
    View more >
    Background: Recent advances in methodologies utilizing “big data” have allowed researchers to investigate the use of common internet search engines as a real time tool to track disease. Little is known about its utility with tracking cancer incidence. This study aims to investigate the potential correlates of monthly internet search volume indexes (SVIs) and observed monthly age standardised incidence rates (ASRs) for breast cancer, colorectal cancer, melanoma and prostate cancer. Methods: The monthly ASRs for the four cancers in Queensland were calculated using data from the Queensland Cancer Registry between January 2006 and December 2012. The monthly SVIs of the respective cancer search terms in Queensland were accessed from Google Trends for the same period. A time series seasonal decomposition method was performed to detect the seasonal patterns of SVIs and ASRs. Pearson’s correlation coefficient and time series crosscorrelation analysis were used to assess the associations between SVIs and ASRs. Linear regression models were used to examine the power of SVIs to predict monthly in ASRs. Results: Increases in the monthly ASRs of the four cancers were significantly correlated with increases in the monthly SVIs of the respective cancers except for colorectal cancer. The predictive power of the SVIs to explain variances in the corresponding ASRs varied by cancer type, with the percent explained ranging from 5.6% for breast cancer to 17.9% for skin cancer (SVI) with melanoma (ASR). Some improvement in the variation explained was obtained by including more search terms or lagged SVIs for the respective cancers in the linear regression models. The seasonal analysis indicated that the SVIs peaked periodically at around their respective cancer awareness months. Conclusions: Using SVIs from a popular internet search engine was only able to explain a small portion of changes in the respective ASRs. While an expanded regression model explained a higher proportion of variability, the interpretation of this was difficult. Further development and refinement of this approach will be needed before search-based cancer surveillance can provide useful information regarding resource deployment to guide cancer control and track the impact of cancer awareness and education programmes
    View less >
    Journal Title
    BMC Cancer
    Volume
    17
    DOI
    https://doi.org/10.1186/s12885-017-3828-x
    Copyright Statement
    © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
    Subject
    Oncology and carcinogenesis
    Oncology and carcinogenesis not elsewhere classified
    Health services and systems
    Public health
    Publication URI
    http://hdl.handle.net/10072/369841
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander