Crystallization-induced amide bond formation creates a boron-centered spirocyclic system

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Pappin, Brighid B
Levonis, Stephan M
Healy, Peter C
Kiefel, Milton J
Simone, Michela I
Houston, Todd A
Year published
2017
Metadata
Show full item recordAbstract
The 5-nitrosalicylate ester of 2-acetamidophenylboronic acid (C15H10BN2O6) is formed under crystallization conditions from the 5-nitrosalicylate ester of 2-aminophenylboronic acid. The boron at the center of this structure exists as a tetrahedral complex produced by a dative bond with the amide carbonyl. The perpendicular shape produces an unusual packing structure including a bifurcated hydrogen bond between the amide hydrogen and carbonyl groups on two neighboring molecules. We propose that this reaction occurs due to increased Lewis acidity of the nitrosalicylate ester of 2-aminophenylboronic acid.The 5-nitrosalicylate ester of 2-acetamidophenylboronic acid (C15H10BN2O6) is formed under crystallization conditions from the 5-nitrosalicylate ester of 2-aminophenylboronic acid. The boron at the center of this structure exists as a tetrahedral complex produced by a dative bond with the amide carbonyl. The perpendicular shape produces an unusual packing structure including a bifurcated hydrogen bond between the amide hydrogen and carbonyl groups on two neighboring molecules. We propose that this reaction occurs due to increased Lewis acidity of the nitrosalicylate ester of 2-aminophenylboronic acid.
View less >
View less >
Journal Title
Heterocyclic Communications
Volume
23
Issue
3
Copyright Statement
© 2017 Walter de Gruyter & Co. KG Publishers. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
Subject
Inorganic chemistry
Inorganic chemistry not elsewhere classified
Organic chemistry