• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Exploring Timeline-Based Malware Classification

    Author(s)
    Islam, Rafiqul
    Altas, Irfan
    Islam, Md Saiful
    Griffith University Author(s)
    Islam, Saiful
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Over the decades or so, Anti-Malware (AM) communities have been faced with a substantial increase in malware activity, including the development of ever-more-sophisticated methods of evading detection. Researchers have argued that an AM strategy which is successful in a given time period cannot work at a much later date due to the changes in malware design. Despite this argument, in this paper, we convincingly demonstrate a malware detection approach, which retains high accuracy over an extended time period. To the best of our knowledge, this work is the first to examine malware executables collected over a span of 10 years. ...
    View more >
    Over the decades or so, Anti-Malware (AM) communities have been faced with a substantial increase in malware activity, including the development of ever-more-sophisticated methods of evading detection. Researchers have argued that an AM strategy which is successful in a given time period cannot work at a much later date due to the changes in malware design. Despite this argument, in this paper, we convincingly demonstrate a malware detection approach, which retains high accuracy over an extended time period. To the best of our knowledge, this work is the first to examine malware executables collected over a span of 10 years. By combining both static and dynamic features of malware and cleanware, and accumulating these features over intervals in the 10-year period in our test, we construct a high accuracy malware detection method which retains almost steady accuracy over the period. While the trend is a slight down, our results strongly support the hypothesis that perhaps it is possible to develop a malware detection strategy that can work well enough into the future.
    View less >
    Journal Title
    IFIP Advances in Information and Communication Technology
    Volume
    405
    DOI
    https://doi.org/10.1007/978-3-642-39218-4_1
    Subject
    Information systems
    Publication URI
    http://hdl.handle.net/10072/370086
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander