• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Chemically Diverse Helix-Constrained Peptides Using Selenocysteine Crosslinking

    Author(s)
    Dantas de Araujo, Aline
    Perry, Samuel
    Fairlie, David
    Griffith University Author(s)
    Perry, Samuel
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    The use of selenocysteines and various cross-linkers to induce helicity in a bioactive peptide is described. The higher reactivity of selenocysteine, relative to cysteine, facilitates rapid cross-linking within unprotected linear peptides under mild aqueous conditions. Alkylating agents of variable topology and electrophilicity were used to link pairs of selenocysteines within a p53 peptide. Facile selenoether formation enables diverse tailoring of the helical peptide structure.The use of selenocysteines and various cross-linkers to induce helicity in a bioactive peptide is described. The higher reactivity of selenocysteine, relative to cysteine, facilitates rapid cross-linking within unprotected linear peptides under mild aqueous conditions. Alkylating agents of variable topology and electrophilicity were used to link pairs of selenocysteines within a p53 peptide. Facile selenoether formation enables diverse tailoring of the helical peptide structure.
    View less >
    Journal Title
    Organic Letters
    DOI
    https://doi.org/10.1021/acs.orglett.8b00233
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Medicinal and Biomolecular Chemistry not elsewhere classified
    Chemical Sciences
    Publication URI
    http://hdl.handle.net/10072/370483
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander