• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Interfacial films formed by a biosurfactant modularized with a silken tail

    Thumbnail
    View/Open
    WibowoPUB2852.pdf (611.2Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Wibowo, David
    Wang, Hao-Fei
    Shao, Zhengzhong
    Middelberg, Anton PJ
    Zhao, Chun-Xia
    Griffith University Author(s)
    Wibowo, David
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    This paper reports the dynamic interfacial behavior of a new interfacially active peptide AM-S, which was designed based on a peptide surfactant AM1 modularized with an additional silk-derived hydrophobic tail to enhance anchoring to air–water interfaces. AM-S peptide shows a random coil conformation in bulk solution similar to AM1 as determined by circular dichroism spectroscopy, which facilitates rapid adsorption at the air–water interface, reducing interfacial tension from 72 to 52 mN/m within 300 s at a low concentration of 10 μM. Although the interfacial films formed by AM-S demonstrated low tensile stress as compared ...
    View more >
    This paper reports the dynamic interfacial behavior of a new interfacially active peptide AM-S, which was designed based on a peptide surfactant AM1 modularized with an additional silk-derived hydrophobic tail to enhance anchoring to air–water interfaces. AM-S peptide shows a random coil conformation in bulk solution similar to AM1 as determined by circular dichroism spectroscopy, which facilitates rapid adsorption at the air–water interface, reducing interfacial tension from 72 to 52 mN/m within 300 s at a low concentration of 10 μM. Although the interfacial films formed by AM-S demonstrated low tensile stress as compared to AM1, the AM-S films in the presence of Zn(II), but not in its absence, show significant resistance against compression, as peptides were unable to desorb quickly under the compression conditions imposed by the Cambridge interfacial tensiometer (CIT). These results indicate that AM-S peptides tend to undergo a multilayer adsorption at the interfaces, in contrast to AM1 peptide that only forms an interfacial monolayer, demonstrating a distinct physical effect of the silk tail. The multilayer structure of AM-S in the presence of Zn(II) was also apparent on a thin-film pressure balance experiment. The thin films formed by AM-S peptide were thicker than the films formed by AM1 peptide, thus enabling stabilization of the films against increased critical air pressure as well as the self-assembly of the AM-S peptides. Also, AM-S peptide was shown to be capable of forming dense foams with small bubble size and maintained foam stability comparable to AM1 peptide. This study demonstrated that addition of a silk tail peptide to a biosurfactant can significantly modify interfacial adsorption behavior at a fluid–fluid interface, which may guide further molecular design strategies.
    View less >
    Journal Title
    Journal of Physical Chemistry C
    Volume
    121
    Issue
    27
    DOI
    https://doi.org/10.1021/acs.jpcc.7b03807
    Copyright Statement
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright 2017 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see 10.1021/acs.jpcc.7b03807
    Subject
    Chemical sciences
    Physical chemistry not elsewhere classified
    Engineering
    Publication URI
    http://hdl.handle.net/10072/370764
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander