• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Induction of oxidative stress and cell apoptosis by selenium: the cure against oral carcinoma

    Thumbnail
    View/Open
    QiaoPUB5632.pdf (777.3Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Qiao, Bin
    He, Baoxia
    Cai, Jinghua
    Lam, Alfred King-Yin
    He, Wei
    Griffith University Author(s)
    Lam, Alfred K.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Oral carcinoma (OC) remains one of the most difficult malignancies to cure. selenium (Se) is an essential trace mineral for human and animals, but high concentrations of Se induce apoptosis and oxidative effects. Although cell apoptosis has been evidenced as a critical mechanism mediating the anticancer activity of Se, the underlying molecular mechanisms remain elusive. To explore the role of Se in rat OC, we examined the weather the oxidative stress-mediated apoptotic pathway induced by Se was involved in the development of OC. In this study, we successfully constructed the OC rat model by 4-Nitroquinoline-1-oxide (4-NQO) ...
    View more >
    Oral carcinoma (OC) remains one of the most difficult malignancies to cure. selenium (Se) is an essential trace mineral for human and animals, but high concentrations of Se induce apoptosis and oxidative effects. Although cell apoptosis has been evidenced as a critical mechanism mediating the anticancer activity of Se, the underlying molecular mechanisms remain elusive. To explore the role of Se in rat OC, we examined the weather the oxidative stress-mediated apoptotic pathway induced by Se was involved in the development of OC. In this study, we successfully constructed the OC rat model by 4-Nitroquinoline-1-oxide (4-NQO) exposure which reflected from histopathological observations. Se-induced the productions of methane dicarboxylic aldehyde (MDA) and reactive oxygen species (ROS), which was accompanied by the inhibition of superoxide dismutase (SOD) both in vivo and vitro. The anti-apoptotic gene (Bcl-2) was down-regulated and pro-apoptosis members (Bax, Bak, Cyt-c, caspase9 and caspase3) were up-regulated by Se in OC cells. Meanwhile, we also found that Se could strongly inhibited the cell proliferation of OC lines in vitro. These results suggested that excessive Se could effectively cause oxidative stress and induce apoptosis in OC cells, as a result the OC was also inhibited to some extent. Therefore, the information presented in this study is believed to be helpful in supplementing data for further therapy of OC.
    View less >
    Journal Title
    Oncotarget
    Volume
    8
    Issue
    69
    DOI
    https://doi.org/10.18632/oncotarget.22752
    Copyright Statement
    © Qiao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Subject
    Oncology and carcinogenesis
    Oncology and carcinogenesis not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/370783
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander