• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Within-drainage population genetic structure of the freshwater fish Pseudomugil signifer (Pseudomugilidae) in norther. Australia

    Thumbnail
    View/Open
    17512_1.pdf (5.773Mb)
    Author(s)
    McGlashan, DJ
    Hughes, JM
    Bunn, SE
    Griffith University Author(s)
    Hughes, Jane M.
    McGlashan, Dugald
    Year published
    2001
    Metadata
    Show full item record
    Abstract
    Dendritic channel patterns have the potential to isolate populations within drainages, depending on the relative position within the stream hierarchy of the populations. We investigated the extent of genetic subdivision in the Australian freshwater fish Pseudomugil signifer (Kner) (Pseudomugilidae) from two drainages in northern Queensland, Australia, using allozyme techniques. The drainages were adjacent and had similar channel patterns each with two major subcatchments coalesced to an estuarine confluence. Analysis of 30 sites across the two drainages revealed that although there was significant genetic variation among ...
    View more >
    Dendritic channel patterns have the potential to isolate populations within drainages, depending on the relative position within the stream hierarchy of the populations. We investigated the extent of genetic subdivision in the Australian freshwater fish Pseudomugil signifer (Kner) (Pseudomugilidae) from two drainages in northern Queensland, Australia, using allozyme techniques. The drainages were adjacent and had similar channel patterns each with two major subcatchments coalesced to an estuarine confluence. Analysis of 30 sites across the two drainages revealed that although there was significant genetic variation among sites in both drainages, this was not between the two subcatchments in either case. This result did not support predictions of the stream hierarchy model (SHM), which would predict higher levels of variation among subcatchments than within them, nor did it suggest that estuarine conditions represent a significant barrier to dispersal in this species. More variation was among sites within each subcatchment. Multidimensional scaling plots revealed that, although most sites within a drainage were similar to one another, outlier sites occurred in each drainage, so correlations between genetic distance and geographic distance were weak. We suggest that the distance between sites and the probability of connectivity between sites may better explain the observed distribution of genetic diversity.
    View less >
    Journal Title
    Canadian Journal of Fisheries and Aquatic Sciences
    Volume
    58
    DOI
    https://doi.org/10.1139/f01-113
    Copyright Statement
    © 2001 NRC Research Press. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Ecology
    Zoology
    Fisheries Sciences
    Publication URI
    http://hdl.handle.net/10072/3709
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander