• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression

    Thumbnail
    View/Open
    GrimolizziPUB5650.pdf (2.204Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Grimolizzi, Franco
    Monaco, Federica
    Leoni, Francesca
    Bracci, Massimo
    Staffolani, Sara
    Bersaglieri, Cristiana
    Gaetani, Simona
    Valentino, Matteo
    Amati, Monica
    Rubini, Corrado
    Saccucci, Franca
    Neuzil, Jiri
    Tomasetti, Marco
    Santarelli, Lory
    Griffith University Author(s)
    Neuzil, Jiri
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Lung cancer is one of the leading causes of cancer-related deaths. It is diagnosed mostly at the locally advanced or metastatic stage. Recently, micro RNAs (miRs) and their distribution in circulation have been implicated in physiological and pathological processes. In this study, miR-126 was evaluated in serum, exosome and exosome-free serum fractions in non-small cell lung cancer (NSCLC) patients at early and advanced stages, and compared with healthy controls. Down-regulation of miR-126 was found in serum of advanced stage NSCLC patients. In healthy controls, circulating miR-126 was equally distributed between exosomes ...
    View more >
    Lung cancer is one of the leading causes of cancer-related deaths. It is diagnosed mostly at the locally advanced or metastatic stage. Recently, micro RNAs (miRs) and their distribution in circulation have been implicated in physiological and pathological processes. In this study, miR-126 was evaluated in serum, exosome and exosome-free serum fractions in non-small cell lung cancer (NSCLC) patients at early and advanced stages, and compared with healthy controls. Down-regulation of miR-126 was found in serum of advanced stage NSCLC patients. In healthy controls, circulating miR-126 was equally distributed between exosomes and exosome-free serum fractions. Conversely, in both early and advanced stage NSCLC patients, miR-126 was mainly present in exosomes. Different fractions of miR-126 in circulation may reflect different conditions during tumour formation. Incubation of exosomes from early and advanced NSCLC patients induced blood vessel formation and malignant transformation in human bronchial epithelial cells. On the other hand, exosome-enriched miR-126 from normal endothelial cells inhibited cell growth and induces loss of malignancy of NSCLC cells. These findings suggest a role of exo-miRs in the modulation of the NSCLC microenvironmental niche. Exosome-delivered miRs thus hold a substantial promise as a diagnostics biomarker as well as a personalized therapeutic modality.
    View less >
    Journal Title
    Scientific Reports
    Volume
    7
    DOI
    https://doi.org/10.1038/s41598-017-15475-6
    Copyright Statement
    © Te Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
    Subject
    Oncology and carcinogenesis
    Publication URI
    http://hdl.handle.net/10072/371103
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander