• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Book chapters
    • View Item
    • Home
    • Griffith Research Online
    • Book chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Gravitational Search Algorithm With Chaos

    Author(s)
    Mirjalili, Seyedali
    Gandomi, Amir H
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    The literature shows that the Gravitational Search Algorithm (GSA) is really competitive compared to Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) on benchmark functions. However, local optima entrapment and slow convergence are hindrances when solving real engineering problems. Such issues originate from slow movement of masses due to nearly equal weight proportional to the number of iterations. In this study, 10 chaotic maps tune the gravitational constant (G) to overcome these problems. The gravitational constant balances exploration and exploitation, so chaotic maps are allowed to perform this duty in this ...
    View more >
    The literature shows that the Gravitational Search Algorithm (GSA) is really competitive compared to Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) on benchmark functions. However, local optima entrapment and slow convergence are hindrances when solving real engineering problems. Such issues originate from slow movement of masses due to nearly equal weight proportional to the number of iterations. In this study, 10 chaotic maps tune the gravitational constant (G) to overcome these problems. The gravitational constant balances exploration and exploitation, so chaotic maps are allowed to perform this duty in this study. Ten unconstrained benchmark functions examine the proposed Chaotic GSA (CGSA) algorithms. This work also considers finding the optimal design for welded beam and pressure vessel designs to prove the applicability of the proposed method. The results prove that chaotic maps improve the performance of GSA.
    View less >
    Book Title
    Handbook of Neural Computation
    DOI
    https://doi.org/10.1016/B978-0-12-811318-9.00001-6
    Subject
    Artificial intelligence not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/371588
    Collection
    • Book chapters

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander