• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Gender Classification using Interlaced Derivative Patterns

    Thumbnail
    View/Open
    65934_1.pdf (1.137Mb)
    Author
    Shobeirinejad, Ameneh
    Gao, Yongsheng
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Automated gender recognition has become an interesting and challenging research problem in recent years with its potential applications in security industry and human-computer interaction systems. In this paper we present a novel feature representation, namely Interlaced Derivative Patterns (IDP), which is a derivative-based technique to extract discriminative facial features for gender classification. The proposed technique operates on a neighborhood around a pixel and concatenates the extracted regional feature distributions to form a feature vector. The experimental results demonstrate the effectiveness of the IDP method ...
    View more >
    Automated gender recognition has become an interesting and challenging research problem in recent years with its potential applications in security industry and human-computer interaction systems. In this paper we present a novel feature representation, namely Interlaced Derivative Patterns (IDP), which is a derivative-based technique to extract discriminative facial features for gender classification. The proposed technique operates on a neighborhood around a pixel and concatenates the extracted regional feature distributions to form a feature vector. The experimental results demonstrate the effectiveness of the IDP method for gender classification, showing that the proposed approach achieves 29.6% relative error reduction compared to Local Binary Patterns (LBP), while it performs over four times faster than Local Derivative Patterns (LDP).
    View less >
    Conference Title
    Proceedings of the 20th International Conference on Pattern Recognition (ICPR 2010)
    DOI
    https://doi.org/10.1109/ICPR.2010.1118
    Copyright Statement
    © 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
    Subject
    Computer Vision
    Pattern Recognition and Data Mining
    Publication URI
    http://hdl.handle.net/10072/37204
    Collection
    • Conference outputs

    Footer

    Social media

    • Facebook
    • Twitter
    • YouTube
    • Instagram
    • Linkedin
    First peoples of Australia
    • Aboriginal
    • Torres Strait Islander

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane
    • Australia