• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Battery energy storage capacity optimisation for grid-connected microgrids with distributed generators

    Thumbnail
    View/Open
    GarmabdariPUB2902.pdf (5.549Mb)
    Author(s)
    Garmabdari, Rasoul
    Moghimi, Mojtaba
    Yang, Fuwen
    Gray, Evan
    Lu, Junwei
    Griffith University Author(s)
    Gray, Evan M.
    Lu, Junwei
    Yang, Fuwen
    Garmabdari, Rasoul
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Abstract: This paper presents a battery capacity optimisation method with the aim of investment and operational cost reduction for grid-connected microgrids consisting of dispatchable generators, renewable energy resources and battery energy storage. The operating cost of grid-connected commercial Microgrids is mainly associated with the purchased energy from the grid and monthly peak demand. Hence, mitigating the peak value by the means of battery energy storage and dispatchable generators during the peak period can effectively reduce the operating cost. However, due to the high cost and short life span of the battery energy ...
    View more >
    Abstract: This paper presents a battery capacity optimisation method with the aim of investment and operational cost reduction for grid-connected microgrids consisting of dispatchable generators, renewable energy resources and battery energy storage. The operating cost of grid-connected commercial Microgrids is mainly associated with the purchased energy from the grid and monthly peak demand. Hence, mitigating the peak value by the means of battery energy storage and dispatchable generators during the peak period can effectively reduce the operating cost. However, due to the high cost and short life span of the battery energy storage systems, the optimum design of energy storages is of the utmost importance to the Microgrids. This paper proposes an efficient iterative method with an inner unit commitment optimisation layer to achieve the optimised battery capacity. In order to implement the inner unit commitment optimisation, the Mixed Integer Quadratic Programming (MIQP) optimisation algorithm is applied and CPLEX solver is chosen to solve the optimisation problem. This approach is applicable and beneficial when dealing with high demands as it economically distributes the load requirement between the battery and dispatchable generators. Finally, the proposed method is applied to determine the battery capacity of the experimental Microgrid at Griffith University. The simulation results for the understudy case verified the efficiency and effectiveness of the proposed approach.
    View less >
    Conference Title
    2017 AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC)
    Volume
    2017-November
    DOI
    https://doi.org/10.1109/AUPEC.2017.8282480
    Copyright Statement
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Electrical energy generation (incl. renewables, excl. photovoltaics)
    Publication URI
    http://hdl.handle.net/10072/372040
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander