Show simple item record

dc.contributor.authorSun, FangFangen_US
dc.contributor.authorKuang, Yuanwenen_US
dc.contributor.authorWen, Dazhien_US
dc.contributor.authorXu, Zhihongen_US
dc.contributor.authorLi, Jianlien_US
dc.contributor.authorZuo, Weidongen_US
dc.contributor.authorHou, Enqingen_US
dc.date.accessioned2017-04-24T08:43:23Z
dc.date.available2017-04-24T08:43:23Z
dc.date.issued2010en_US
dc.date.modified2011-03-15T08:02:32Z
dc.identifier.issn14390108en_US
dc.identifier.doi10.1007/s11368-010-0249-8en_AU
dc.identifier.urihttp://hdl.handle.net/10072/37227
dc.description.abstractPurpose We aimed to investigate long-term tree growth rates, water use efficiencies (WUE), and tree ring nitrogen (N) isotope compositions (d15N) of Masson pine (Pinus massoniana L.) in response to global climate change and local N deposition in Southern China. Materials and methods Tree annual growth rings of Masson pine were collected from four forest sites, viz. South China Botanical Garden (SBG), Xi Qiao Shan (XQS) Forest Park, Ding Hu Shan (DHS) Natural Reserve, and Nan Kun Shan (NKS) Natural Reserve in Southern China. The mean annual basal area increment (BAI), WUE, and d15N at every 5-year intervals of Masson pine during the last 50 years were determined. Regression analyses were used to quantify the relationships of BAI and WUE with atmospheric carbon dioxide concentration ([CO2]), temperature, rainfall, and tree ring elemental concentrations at the four study sites. Results and discussion Tree BAI showed a quadratic relationship with rising [CO2]. The tipping points of [CO2] for BAI, the peaks of BAI when the critical [CO2] was reached, occurred earlier at the sites of SBG, XQS, and DHS which were exposed to higher temperature, N deposition, and lower mineral nutrient availability, as compared with the tipping points of [CO2] for BAI at the site of NKS which had higher rainfall, lower temperature, and better nutritional status. The average tipping point of [CO2] at the four sites for the BAI response curves was 356 ppm, after which, the BAI would be expected to decrease quadratically with rising [CO2]. The multiple regressions of BAI confirmed the relationships of long-term tree growth rate with rainfall, tree WUE, and nutrients and d15N in tree rings. Nonlinear relationships between BAI and tree ring d15N at DHS and negatively linear one at NKS reflected the fertilization effect of N deposition on tree growth rate initially, but this effect peaked or became negative once the forest approached or passed the N saturation. Nonlinear relations of tree WUE with rising [CO2] and summer temperature were also observed. Conclusions The tipping points of [CO2] for tree BAI were not uniform, but depended on the site conditions, such as hydrological and nutritional constraints. Nonlinear relationships should be considered for predicting the dynamics of long-term tree growth rate and above-ground forest carbon (C) stock in response to future global climate change (particularly rising [CO2]) and local N deposition.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_AU
dc.languageEnglishen_US
dc.language.isoen_AU
dc.publisherSpringeren_US
dc.publisher.placeGermanyen_US
dc.relation.ispartofstudentpublicationNen_AU
dc.relation.ispartofpagefrom1453en_US
dc.relation.ispartofpageto1465en_US
dc.relation.ispartofissue8en_US
dc.relation.ispartofjournalJournal of Soils and Sedimentsen_US
dc.relation.ispartofvolume10en_US
dc.rights.retentionYen_AU
dc.subject.fieldofresearchSoil Sciences not elsewhere classifieden_US
dc.subject.fieldofresearchcode050399en_US
dc.titleLong-term tree growth rate, water use efficiency, and tree ring nitrogen isotope composition of Pinus massoniana L. in response to global climate change and local nitrogen deposition in Southern Chinaen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.facultyGriffith Sciences, School of Natural Sciencesen_US
gro.date.issued2010
gro.hasfulltextNo Full Text


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record