• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Long-term Prediction of Bridge Element Performance Using Time Delay Neural Networks (TDNNs)

    Thumbnail
    View/Open
    68883_1.pdf (341.2Kb)
    Author(s)
    Lee, J
    Blumenstein, M
    Guan, H
    Loo, YC
    Griffith University Author(s)
    Loo, Yew-Chaye
    Blumenstein, Michael M.
    Guan, Hong
    Lee, Jaeho
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    A bridge is principally designed to have a long service life. However, due to number factors, it could fail prematurely, and could cause loss of human life. In order to ensure the optimum bridge serviceability, systematic asset management is essential for effective decision-making of maintenance, repair and rehabilitation (MR&R). Systematic asset management can be achieved by a computer-based bridge management system (BMS). Successful BMS development requires a reliable bridge deterioration model, which is the most crucial component in a BMS. Historical condition ratings obtained from biennial bridge inspections are a major ...
    View more >
    A bridge is principally designed to have a long service life. However, due to number factors, it could fail prematurely, and could cause loss of human life. In order to ensure the optimum bridge serviceability, systematic asset management is essential for effective decision-making of maintenance, repair and rehabilitation (MR&R). Systematic asset management can be achieved by a computer-based bridge management system (BMS). Successful BMS development requires a reliable bridge deterioration model, which is the most crucial component in a BMS. Historical condition ratings obtained from biennial bridge inspections are a major resource for predicting future bridge deterioration via BMSs. However, available historical condition ratings from most bridge agencies are very limited, thus posing a major barrier for predicting reliable future bridge performance. This paper presents the progressive research on the development of a reliable bridge deterioration model using advanced Artificial Intelligence (AI) techniques. The development is organised in three major steps: (1) generating unavailable past bridge element condition ratings using the Backward Prediction Model (BPM) - this helps to provide sufficient historical deterioration patterns for each element; (2) predicting long-term condition ratings based on the outcome of Step 1 using Time Delay Neural Networks (TDNNs); and (3) improving long-term prediction accuracy of Step 2 by employing Case-based Reasoning (CBR). This paper mainly focuses on the first two steps of the research. Promising results are reported for the reliable long-term prediction of bridge element performance.
    View less >
    Conference Title
    Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas
    Publisher URI
    http://www.iabse.org/
    Copyright Statement
    © 2010 IASBE. The attached file is posted here in accordance with the copyright policy of the publisher, for your personal use only. No further distribution permitted. Use hypertext link for access to conference website.
    Subject
    Infrastructure Engineering and Asset Management
    Simulation and Modelling
    Publication URI
    http://hdl.handle.net/10072/37232
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander