Show simple item record

dc.contributor.authorTuan-Khoa, Nguyen
dc.contributor.authorHoang-Phuong, Phan
dc.contributor.authorKamble, Harshad
dc.contributor.authorVadivelu, Raja
dc.contributor.authorDinh, Toan
dc.contributor.authorIacopi, Alan
dc.contributor.authorWalker, Glenn
dc.contributor.authorHold, Leonie
dc.contributor.authorNam-Trung, Nguyen
dc.contributor.authorDao, Dzung Viet
dc.date.accessioned2018-08-02T22:00:25Z
dc.date.available2018-08-02T22:00:25Z
dc.date.issued2017
dc.identifier.issn1944-8244
dc.identifier.doi10.1021/acsami.7b15381
dc.identifier.urihttp://hdl.handle.net/10072/372370
dc.description.abstractMicromachined membranes are promising platforms for cell culture thanks to their miniaturization and integration capabilities. Possessing chemical inertness, biocompatibility, and integration, silicon carbide (SiC) membranes have attracted great interest toward biological applications. In this paper, we present the batch fabrication, mechanical characterizations, and cell culture demonstration of robust ultrathin epitaxial deposited SiC membranes. The as-fabricated ultrathin SiC membranes, with an ultrahigh aspect ratio (length/thickness) of up to 20 000, possess high a fracture strength up to 2.95 GPa and deformation up to 50 μm. A high optical transmittance of above 80% at visible wavelengths was obtained for 50 nm membranes. The as-fabricated membranes were experimentally demonstrated as an excellent substrate platform for bio-MEMS/NEMS cell culture with the cell viability rate of more than 92% after 72 h. The ultrathin SiC membrane is promising for in vitro observations/imaging of bio-objects with an extremely short optical access.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofpagefrom41641
dc.relation.ispartofpageto41647
dc.relation.ispartofissue48
dc.relation.ispartofjournalACS Applied Materials and Interfaces
dc.relation.ispartofvolume9
dc.subject.fieldofresearchMicroelectromechanical systems (MEMS)
dc.subject.fieldofresearchNanomaterials
dc.subject.fieldofresearchInorganic materials (incl. nanomaterials)
dc.subject.fieldofresearchEngineering
dc.subject.fieldofresearchChemical sciences
dc.subject.fieldofresearchPhysical sciences
dc.subject.fieldofresearchcode401705
dc.subject.fieldofresearchcode401807
dc.subject.fieldofresearchcode340301
dc.subject.fieldofresearchcode40
dc.subject.fieldofresearchcode34
dc.subject.fieldofresearchcode51
dc.titleSuperior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.facultyGriffith Sciences, School of Engineering and Built Environment
gro.hasfulltextNo Full Text
gro.griffith.authorDao, Dzung V.
gro.griffith.authorNguyen, Nam-Trung
gro.griffith.authorVadivelu, Raja
gro.griffith.authorNguyen, Khoa T.


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record