• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Gas-Permeable Membrane-Based Conductivity Probe Capable of In Situ Real-Time Monitoring of Ammonia in Aquatic Environments

    Author(s)
    Li, Tianling
    Panther, Jared
    Qiu, Yuan
    Liu, Chang
    Huang, Jianyin
    Wu, Yonghong
    Wong, Po Keung
    An, Taicheng
    Zhang, Shanqing
    Zhao, Huijun
    Griffith University Author(s)
    Zhao, Huijun
    Zhang, Shanqing
    Panther, Jared
    Liu, Chang
    Huang, Jianyin
    Qiu, Yuan
    Li, Tianling
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Aquatic ammonia has toxic effects on aquatic life. This work reports a gas-permeable membrane-based conductivity probe (GPMCP) developed for real-time monitoring of ammonia in aquatic environments. The GPMCP innovatively combines a gas-permeable membrane with a boric acid receiving phase to selectively extract ammonia from samples and form ammonium at the inner membrane interface. The rate of the receiving phase conductivity increase is directly proportional to the instantaneous ammonia concentration in the sample, which can be rapidly and sensitively determined by the embedded conductivity detector. A precalibration strategy ...
    View more >
    Aquatic ammonia has toxic effects on aquatic life. This work reports a gas-permeable membrane-based conductivity probe (GPMCP) developed for real-time monitoring of ammonia in aquatic environments. The GPMCP innovatively combines a gas-permeable membrane with a boric acid receiving phase to selectively extract ammonia from samples and form ammonium at the inner membrane interface. The rate of the receiving phase conductivity increase is directly proportional to the instantaneous ammonia concentration in the sample, which can be rapidly and sensitively determined by the embedded conductivity detector. A precalibration strategy was developed to eliminate the need for an ongoing calibration. The analytical principle and GPMCP performance were systematically validated. The laboratory results showed that ammonia concentrations ranging from 2 to 50 000 μg L–1 can be detected. The field deployment results demonstrated the GPMCP’s ability to obtain high-resolution continuous ammonia concentration profiles and the absolute average ammonia concentration over a prolonged deployment period. By inputting the temperature and pH data, the ammonium concentration can be simultaneously derived from the corresponding ammonia concentration. The GPMCP embeds a sophisticated analytical principle with the inherent advantages of high selectivity, sensitivity, and accuracy, and it can be used as an effective tool for long-term, large-scale, aquatic-environment assessments.
    View less >
    Journal Title
    Environmental Science and Technology
    Volume
    51
    Issue
    22
    DOI
    https://doi.org/10.1021/acs.est.7b03552
    Subject
    Environmental Sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/372385
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander