• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads

    Author(s)
    Hoffmann, N
    Rehm, BHA
    Griffith University Author(s)
    Rehm, Bernd
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    Comparative transcriptional analysis of polyhdroxyalkanoate (PHA) biosynthesis genes with wild type strains and mutants, which lack the intact alternative sigma factor gene rpoN, was performed using semi-quantitative RT-PCR. In Pseudomonas putida and Pseudomonas aeruginosa, phaI and phaF were co- transcribed. PhaF was a negative regulator of transcription of PHA synthase gene phaC1 but did not serve as auto-repressor. However, the alternative sigma factor RpoN is suggested as negative regulator of phaF transcription. In P. putida, phaI-phaF transcription is strongly dependent on nitrogen availability and PHA accumulation, ...
    View more >
    Comparative transcriptional analysis of polyhdroxyalkanoate (PHA) biosynthesis genes with wild type strains and mutants, which lack the intact alternative sigma factor gene rpoN, was performed using semi-quantitative RT-PCR. In Pseudomonas putida and Pseudomonas aeruginosa, phaI and phaF were co- transcribed. PhaF was a negative regulator of transcription of PHA synthase gene phaC1 but did not serve as auto-repressor. However, the alternative sigma factor RpoN is suggested as negative regulator of phaF transcription. In P. putida, phaI-phaF transcription is strongly dependent on nitrogen availability and PHA accumulation, whereas phaF transcription is not. These data suggested a differential regulation of phaF and phaIF. The phaC1 gene transcription occurred almost independently by of RpoN or nitrogen availability in both pseudomonads.
    View less >
    Journal Title
    Biotechnology Letters
    Volume
    27
    Issue
    4
    DOI
    https://doi.org/10.1007/s10529-004-8353-8
    Subject
    Biological sciences
    Biochemistry and cell biology not elsewhere classified
    Engineering
    Publication URI
    http://hdl.handle.net/10072/372837
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander