Truss optimization with natural frequency bounds using improved symbiotic organisms search

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Tejani, Ghanshyam G
Saysani, Vimal J
Patel, Vivek K
Mirjalili, Seyedali
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Many engineering structures are subjected to dynamic excitation, which may lead to undesirable vibrations. The multiple natural frequency bounds in truss optimization problems can improve dynamic behaviour of structures. However, shape and size variables with frequency bounds are challenging due to its characteristic, which is non-linear, non-convex, and implicit with respect to the design variables. As the main contribution, this work proposes an improved version of a recently proposed Symbiotic Organisms Search (SOS) called an Improved SOS (ISOS) to tackle the above-mentioned challenges. The main motivation is to improve ...
View more >Many engineering structures are subjected to dynamic excitation, which may lead to undesirable vibrations. The multiple natural frequency bounds in truss optimization problems can improve dynamic behaviour of structures. However, shape and size variables with frequency bounds are challenging due to its characteristic, which is non-linear, non-convex, and implicit with respect to the design variables. As the main contribution, this work proposes an improved version of a recently proposed Symbiotic Organisms Search (SOS) called an Improved SOS (ISOS) to tackle the above-mentioned challenges. The main motivation is to improve the exploitative behaviour of SOS since this algorithm significantly promotes exploration which is a good mechanism to avoid local solution, yet it negatively impacts the accuracy of solutions (exploitation) as a consequence. The feasibility and effectiveness of ISOS is studied with six benchmark planar/space trusses and thirty functions extracted from the CEC2014 test suite, and the results are compared with other meta-heuristics. The experimental results show that ISOS is more reliable and efficient as compared to the basis SOS algorithm and other state-of-the-art algorithms.
View less >
View more >Many engineering structures are subjected to dynamic excitation, which may lead to undesirable vibrations. The multiple natural frequency bounds in truss optimization problems can improve dynamic behaviour of structures. However, shape and size variables with frequency bounds are challenging due to its characteristic, which is non-linear, non-convex, and implicit with respect to the design variables. As the main contribution, this work proposes an improved version of a recently proposed Symbiotic Organisms Search (SOS) called an Improved SOS (ISOS) to tackle the above-mentioned challenges. The main motivation is to improve the exploitative behaviour of SOS since this algorithm significantly promotes exploration which is a good mechanism to avoid local solution, yet it negatively impacts the accuracy of solutions (exploitation) as a consequence. The feasibility and effectiveness of ISOS is studied with six benchmark planar/space trusses and thirty functions extracted from the CEC2014 test suite, and the results are compared with other meta-heuristics. The experimental results show that ISOS is more reliable and efficient as compared to the basis SOS algorithm and other state-of-the-art algorithms.
View less >
Journal Title
Knowledge-Based Systems
Volume
143
Copyright Statement
© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Structural engineering
Psychology