Show simple item record

dc.contributor.convenorGary Fogelen_AU
dc.contributor.authorGómez-Meneses, Pedroen_US
dc.contributor.authorRandall, Marcusen_US
dc.contributor.authorLewis, Andrewen_US
dc.contributor.editorJ. Aranda & S. XAMBÓen_US
dc.date.accessioned2017-04-24T09:53:03Z
dc.date.available2017-04-24T09:53:03Z
dc.date.issued2010en_US
dc.date.modified2011-03-16T07:58:32Z
dc.identifier.refurihttp://www.wcci2010.org/en_AU
dc.identifier.doi10.1109/CEC.2010.5586194en_AU
dc.identifier.urihttp://hdl.handle.net/10072/37332
dc.description.abstractExtremal optimisation (EO) is a relatively recent nature-inspired heuristic whose search method is especially suitable to solve combinatorial optimisation problems. To date, most of the research in EO has been applied for solving single-objective problems and only a relatively small number of attempts to extend EO toward multi-objective problems. This paper presents a hybrid multi-objective version of EO (HMEO) to solve multi-objective combinatorial problems. This new approach consists of a multi-objective EO framework, for the coarse-grain search, which contains a novel multi-objective combinatorial local search framework for the fine-grain search. The chosen problems to test the proposed method are the multi-objective knapsack problem and the multi-objective quadratic assignment problem. The results show that the new algorithm is able to obtain competitive results to SPEA2 and NSGA-II. The non-dominated points found are well-distributed and similar or very close to the Pareto-front found by previous works.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_AU
dc.format.extent992865 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglishen_US
dc.language.isoen_AU
dc.publisherIEEEen_US
dc.publisher.placePiscataway, NJ, USAen_US
dc.relation.ispartofstudentpublicationNen_AU
dc.relation.ispartofconferencename2010 IEEE World Congress on Computational Intelligence (WCCI 2010)en_US
dc.relation.ispartofconferencetitle2010 IEEE World Congress on Computational Intelligence (WCCI 2010) Proceedings (CEC 2010)en_US
dc.relation.ispartofdatefrom2010-07-18en_US
dc.relation.ispartofdateto2010-07-23en_US
dc.relation.ispartoflocationBarcelona, Spainen_US
dc.rights.retentionYen_AU
dc.subject.fieldofresearchComputer Software not elsewhere classifieden_US
dc.subject.fieldofresearchOptimisationen_US
dc.subject.fieldofresearchcode080399en_US
dc.subject.fieldofresearchcode010303en_US
dc.titleA Hybrid Multi-objective Extremal Optimisation Approach for Multi-objective Combinatorial Optimisation Problemsen_US
dc.typeConference outputen_US
dc.type.descriptionE1 - Conference Publications (HERDC)en_US
dc.type.codeE - Conference Publicationsen_US
gro.rights.copyrightCopyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_AU
gro.date.issued2010
gro.hasfulltextFull Text


Files in this item

This item appears in the following Collection(s)

  • Conference outputs
    Contains papers delivered by Griffith authors at national and international conferences.

Show simple item record