• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Free ammonia enhances dark fermentative hydrogen production from waste activated sludge

    Author(s)
    Wang, Dongbo
    Duan, YuYing
    Yang, Qi
    Liu, Yiwen
    Ni, Bing-Jie
    Wang, Qilin
    Zeng, Guangming
    Li, Xiaoming
    Yuan, Zhiguo
    Griffith University Author(s)
    Wang, Qilin
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Ammonium and/or free ammonia (the unionized form of ammonium) are generally thought to inhibit the activities of microbes involved in anaerobic digestion of waste activated sludge. It was found in this work, however, that the presence of ammonium (NH4+-N) largely enhanced dark fermentative hydrogen production from alkaline pretreated-sludge. With the increase of initial NH4+-N level from 36 to 266 mg/L, the maximal hydrogen production from alkaline (pH 9.5) pretreated-sludge increased from 7.3 to 15.6 mL per gram volatile suspended solids (VSS) under the standard condition. Further increase of NH4+-N to 308 mg/L caused a ...
    View more >
    Ammonium and/or free ammonia (the unionized form of ammonium) are generally thought to inhibit the activities of microbes involved in anaerobic digestion of waste activated sludge. It was found in this work, however, that the presence of ammonium (NH4+-N) largely enhanced dark fermentative hydrogen production from alkaline pretreated-sludge. With the increase of initial NH4+-N level from 36 to 266 mg/L, the maximal hydrogen production from alkaline (pH 9.5) pretreated-sludge increased from 7.3 to 15.6 mL per gram volatile suspended solids (VSS) under the standard condition. Further increase of NH4+-N to 308 mg/L caused a slight decrease of hydrogen yield (15.0 mL/g VSS). Experimental results demonstrated that free ammonia instead of NH4+-N was the true contributor to the enhancement of hydrogen production. It was found that the presence of free ammonia facilitated the releases of both extracellular and intracellular constituents, which thereby provided more substrates for subsequent hydrogen production. The free ammonia at the tested levels (i.e., 0–444 mg/L) did not affect acetogenesis significantly. Although free ammonia inhibited all other bio-processes, its inhibition to the hydrogen consumption processes (i.e., homoacetogenesis, methanogenesis, and sulfate-reducing process) was much severer than that to the hydrolysis and acidogenesis processes. Further investigations with enzyme analyses showed that free ammonia posed slight impacts on protease, butyrate kinase, acetate kinase, CoA-transferase, and [FeFe] hydrogenase activities but largely suppressed the activities of coenzyme F420, carbon monoxide dehydrogenase, and adenylyl sulfate reductase, which were consistent with the chemical analyses performed above.
    View less >
    Journal Title
    Water Research
    Volume
    133
    DOI
    https://doi.org/10.1016/j.watres.2018.01.051
    Subject
    Environmental Technologies
    Publication URI
    http://hdl.handle.net/10072/373352
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander