• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Coalescence Processes of Droplets and Liquid Marbles

    Thumbnail
    View/Open
    JinPUB5778.pdf (5.961Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Jin, Jing
    Ooi, Chin Hong
    Dao, Dzung Viet
    Nguyen, Nam-Trung
    Griffith University Author(s)
    Dao, Dzung V.
    Nguyen, Nam-Trung
    Ooi, Chin Hong
    Jin, Jing
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    The coalescence process of droplets and, more recently, of liquid marbles, has become one of the most essential manipulation schemes in digital microfluidics. This process is indispensable for realising microfluidic functions such as mixing and reactions at microscale. This paper reviews previous studies on droplet coalescence, paying particular attention to the coalescence of liquid marbles. Four coalescence systems have been reviewed, namely, the coalescence of two droplets freely suspended in a fluid; the coalescence of two sessile droplets on a solid substrate; the coalescence of a falling droplet and a sessile droplet ...
    View more >
    The coalescence process of droplets and, more recently, of liquid marbles, has become one of the most essential manipulation schemes in digital microfluidics. This process is indispensable for realising microfluidic functions such as mixing and reactions at microscale. This paper reviews previous studies on droplet coalescence, paying particular attention to the coalescence of liquid marbles. Four coalescence systems have been reviewed, namely, the coalescence of two droplets freely suspended in a fluid; the coalescence of two sessile droplets on a solid substrate; the coalescence of a falling droplet and a sessile droplet on a solid substrate; and liquid marble coalescence. The review is presented according to the dynamic behaviors, physical mechanisms and experimental parameters of the coalescence process. It also provides a systematic overview of how the coalescence process of droplets and liquid marbles could be induced and manipulated using external energy. In addition, the practical applications of liquid marble coalescence as a novel microreactor are highlighted. Finally, future perspectives on the investigation of the coalescence process of liquid marbles are proposed. This review aims to facilitate better understanding of the coalescence of droplets and of liquid marbles as well as to shed new insight on future studies.
    View less >
    Journal Title
    Micromachines
    Volume
    8
    Issue
    11
    DOI
    https://doi.org/10.3390/mi8110336
    Copyright Statement
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Nanotechnology not elsewhere classified
    Nanotechnology
    Publication URI
    http://hdl.handle.net/10072/373401
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander