Electromagnetic Noise Source Approximation for Finite-Difference Time-Domain Modeling Using Near-Field Scanning and Particle Swarm Optimization
Abstract
This paper presents an electromagnetic noise source approximation method based on a 2-D array of electric dipoles for use in finite-difference time-domain simulations. The currents (both magnitude and phase) of these dipoles are optimized via a particle swarm algorithm so as to minimize the difference between the magnetic near-field produced by the dipole array and the magnetic near-field produced by the device under test. The method presented requires only the magnitude of the magnetic field to be measured, simplifying the measurement process. The new noise source modeling method has been applied to a transmission-line test ...
View more >This paper presents an electromagnetic noise source approximation method based on a 2-D array of electric dipoles for use in finite-difference time-domain simulations. The currents (both magnitude and phase) of these dipoles are optimized via a particle swarm algorithm so as to minimize the difference between the magnetic near-field produced by the dipole array and the magnetic near-field produced by the device under test. The method presented requires only the magnitude of the magnetic field to be measured, simplifying the measurement process. The new noise source modeling method has been applied to a transmission-line test case, demonstrating the performance and accuracy of the method.
View less >
View more >This paper presents an electromagnetic noise source approximation method based on a 2-D array of electric dipoles for use in finite-difference time-domain simulations. The currents (both magnitude and phase) of these dipoles are optimized via a particle swarm algorithm so as to minimize the difference between the magnetic near-field produced by the dipole array and the magnetic near-field produced by the device under test. The method presented requires only the magnitude of the magnetic field to be measured, simplifying the measurement process. The new noise source modeling method has been applied to a transmission-line test case, demonstrating the performance and accuracy of the method.
View less >
Journal Title
IEEE Transactions on Electromagnetic Compatibility
Volume
52
Issue
1
Copyright Statement
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subject
Electrical and Electronic Engineering not elsewhere classified