• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Transport Time Scales in Soil Erosion Modeling

    Thumbnail
    View/Open
    LislePUB5723.pdf (402.4Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Lisle, IG
    Sander, GC
    Parlange, J-Y
    Rose, CW
    Hogarth, WL
    Braddock, RD
    Stagnitti, F
    Lockington, DA
    Jomaa, S
    Cheraghi, M
    Barry, DA
    Griffith University Author(s)
    Rose, Calvin W.
    Braddock, Roger D.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Unlike sediment transport in rivers, erosion of agricultural soil must overcome its cohesive strength to move soil particles into suspension. Soil particle size variability also leads to fall velocities covering many orders of magnitude, and hence to different suspended travel distances in overland flow. Consequently, there is a large range of inherent timescales involved in transport of eroded soil. For conditions where there is a constant rainfall rate and detachment is the dominant erosion mechanism, we use the Hairsine–Rose (HR) model to analyze these timescales, to determine their magnitude (bounds) and to provide simple ...
    View more >
    Unlike sediment transport in rivers, erosion of agricultural soil must overcome its cohesive strength to move soil particles into suspension. Soil particle size variability also leads to fall velocities covering many orders of magnitude, and hence to different suspended travel distances in overland flow. Consequently, there is a large range of inherent timescales involved in transport of eroded soil. For conditions where there is a constant rainfall rate and detachment is the dominant erosion mechanism, we use the Hairsine–Rose (HR) model to analyze these timescales, to determine their magnitude (bounds) and to provide simple approximations for them. We show that each particle size produces both fast and slow timescales. The fast timescale controls the rapid adjustment away from experimental initial conditions—this happens so quickly that it cannot be measured in practice. The slow timescales control the subsequent transition to steady state and are so large that true steady state is rarely achieved in laboratory experiments. Both the fastest and slowest timescales are governed by the largest particle size class. Physically, these correspond to the rate of vertical movement between suspension and the soil bed and the time to achieve steady state, respectively. For typical distributions of size classes, we also find that there is often a single dominant timescale that governs the growth in the total mass of sediment in the non-cohesive deposited layer. This finding allows a considerable simplification of the HR model, leading to analytical expressions for the evolution of suspended and deposited layer concentrations.
    View less >
    Journal Title
    Vadose Zone Journal
    Volume
    16
    Issue
    12
    DOI
    https://doi.org/10.2136/vzj2017.06.0121
    Copyright Statement
    © The Author(s) 2017. This is the author-manuscript version of this paper. It is posted here with permission of the copyright owner(s) for your personal use only. No further distribution permitted. For information about this journal please refer to the journal’s website or contact the author(s).
    Subject
    Crop and pasture production
    Physical geography and environmental geoscience
    Soil sciences
    Soil sciences not elsewhere classified
    Hydrology
    Publication URI
    http://hdl.handle.net/10072/373646
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander