• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children

    Author(s)
    Clifford, Sam
    Mazaheri, Mandana
    Salimi, Farhad
    Ezz, Wafaa Nabil
    Yeganeh, Bijan
    Low-Choy, Samantha
    Walker, Katy
    Mengersen, Kerrie
    Marks, Guy B
    Morawska, Lidia
    Griffith University Author(s)
    Low-Choy, Sama J.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    It is known that ultrafine particles (UFP, particles smaller than 0.1 μm) can penetrate deep into the lungs and potentially have adverse health effects. However, epidemiological data on the health effects of UFP is limited. Therefore, our objective was to test the hypothesis that exposure to UFPs is associated with respiratory health status and systemic inflammation among children aged 8 to 11 years. We conducted a cross-sectional study among 655 children (43.3% male) attending 25 primary (elementary) schools in the Brisbane Metropolitan Area, Australia. Ultrafine particle number concentration (PNC) was measured at each ...
    View more >
    It is known that ultrafine particles (UFP, particles smaller than 0.1 μm) can penetrate deep into the lungs and potentially have adverse health effects. However, epidemiological data on the health effects of UFP is limited. Therefore, our objective was to test the hypothesis that exposure to UFPs is associated with respiratory health status and systemic inflammation among children aged 8 to 11 years. We conducted a cross-sectional study among 655 children (43.3% male) attending 25 primary (elementary) schools in the Brisbane Metropolitan Area, Australia. Ultrafine particle number concentration (PNC) was measured at each school and modelled at homes using Land Use Regression to derive exposure estimates. Health outcomes were respiratory symptoms and diagnoses, measured by parent-completed questionnaire, spirometric lung function, exhaled nitric oxide (FeNO), and serum C reactive protein (CRP). Exposure-response models, adjusted for potential personal and environmental confounders measured at the individual, home and school level, were fitted using Bayesian methods. PNC was not independently associated with respiratory symptoms, asthma diagnosis or spirometric lung function. However, PNC was positively associated with an increase in CRP (1.188-fold change per 1000 UFP cm−3 day/day (95% credible interval 1.077 to 1.299)) and an increase in FeNO among atopic participants (1.054 fold change per 1000 UFP cm−3 day/day (95% CrI 1.005 to 1.106)). UFPs do not affect respiratory health outcomes in children but do have systemic effects, detected here in the form of a positive association with a biomarker for systemic inflammation. This is consistent with the known propensity of UFPs to penetrate deep into the lung and circulatory system.
    View less >
    Journal Title
    Environment International
    Volume
    114
    DOI
    https://doi.org/10.1016/j.envint.2018.02.019
    Subject
    Environmental Science and Management not elsewhere classified
    Environmental and Occupational Health and Safety
    Applied Statistics
    Publication URI
    http://hdl.handle.net/10072/374281
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander