• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Generalization of learning by synchronous waves: from perceptual organization to invariant organization

    Author(s)
    Alexander, David M
    Trengove, Chris
    Sheridan, Phillip E
    van Leeuwen, Cees
    Griffith University Author(s)
    Sheridan, Phillip E.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    From a few presentations of an object, perceptual systems are able to extract invariant properties such that novel presentations are immediately recognized. This may be enabled by inferring the set of all representations equivalent under certain transformations. We implemented this principle in a neurodynamic model that stores activity patterns representing transformed versions of the same object in a distributed fashion within maps, such that translation across the map corresponds to the relevant transformation. When a pattern on the map is activated, this causes activity to spread out as a wave across the map, ...
    View more >
    From a few presentations of an object, perceptual systems are able to extract invariant properties such that novel presentations are immediately recognized. This may be enabled by inferring the set of all representations equivalent under certain transformations. We implemented this principle in a neurodynamic model that stores activity patterns representing transformed versions of the same object in a distributed fashion within maps, such that translation across the map corresponds to the relevant transformation. When a pattern on the map is activated, this causes activity to spread out as a wave across the map, activating all the transformed versions represented. Computational studies illustrate the efficacy of the proposed mechanism. The model rapidly learns and successfully recognizes rotated and scaled versions of a visual representation from a few prior presentations. For topographical maps such as primary visual cortex, the mechanism simultaneously represents identity and variation of visual percepts whose features change through time.
    View less >
    Journal Title
    Cognitive Neurodynamics
    Volume
    5
    Issue
    2
    DOI
    https://doi.org/10.1007/s11571-010-9142-9
    Subject
    Zoology
    Zoology not elsewhere classified
    Medical physiology
    Cognitive and computational psychology
    Publication URI
    http://hdl.handle.net/10072/37474
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander