• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Forgetting for knowledge bases in DL-Lite

    Author(s)
    Wang, Zhe
    Wang, Kewen
    Topor, Rodney
    Pan, Jeff Z
    Griffith University Author(s)
    Topor, Rodney W.
    Wang, Kewen
    Wang, Zhe
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    To support the reuse and combination of ontologies in Semantic Web applications, it is often necessary to obtain smaller ontologies from existing larger ontologies. In particular, applications may require the omission of certain terms, e. g., concept names and role names, from an ontology. However, the task of omitting terms from an ontology is challenging because the omission of some terms may affect the relationships between the remaining terms in complex ways.We present the first solution to the problem of omitting concepts and roles from knowledge bases of description logics (DLs) by adapting the technique of ...
    View more >
    To support the reuse and combination of ontologies in Semantic Web applications, it is often necessary to obtain smaller ontologies from existing larger ontologies. In particular, applications may require the omission of certain terms, e. g., concept names and role names, from an ontology. However, the task of omitting terms from an ontology is challenging because the omission of some terms may affect the relationships between the remaining terms in complex ways.We present the first solution to the problem of omitting concepts and roles from knowledge bases of description logics (DLs) by adapting the technique of forgetting, previously used in other domains. Specifically, we first introduce a model-theoretic definition of forgetting for knowledge bases (both TBoxes and ABoxes) in DL-LiteNbool, which is a non-trivial adaption of the standard definition for classical logic, and show that our model-based forgetting satisfies all major criteria of a rational forgetting operator, which in turn verifies the suitability of our model-based forgetting. We then introduce algorithms that implement forgetting operations in DL-Lite knowledge bases. We prove that the algorithms are correct with respect to the semantic definition of forgetting.We establish a general framework for defining and comparing different definitions of forgetting by introducing a parameterized family of forgetting operators called query-based forgetting operators. In this framework we identify three specific query-based forgetting operators and show that they form a hierarchy. In particular, we show that the model-based forgetting coincides with one of these query-based forgetting operators.
    View less >
    Journal Title
    Annals of Mathematics and Artificial Intelligence
    Volume
    58
    Issue
    1-2
    DOI
    https://doi.org/10.1007/s10472-010-9187-9
    Subject
    Artificial Intelligence and Image Processing not elsewhere classified
    Applied Mathematics
    Artificial Intelligence and Image Processing
    Computation Theory and Mathematics
    Publication URI
    http://hdl.handle.net/10072/37492
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander