• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Automated ECG diagnostic P-wave analysis using wavelets

    Author(s)
    Diery, A
    Rowlands, D
    Cutmore, TRH
    James, D
    Griffith University Author(s)
    Rowlands, David D.
    James, Daniel A.
    Cutmore, Timothy
    Diery, Adrian P.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    P-wave characteristics in the human ECG are an important source of information in the diagnosis of atrial conduction pathology. However, diagnosis by visual inspection is a difficult task since the P-wave is relatively small and noise masking is often present. This paper introduces novel wavelet characteristics derived from the continuous wavelet transform (CWT) which are shown to be potentially effective discriminators in an automated diagnostic process. Characteristics of the 12-lead ECG P-wave were derived using CWT and statistical methods. A normal control group and an abnormal (atrial conduction pathology) group ...
    View more >
    P-wave characteristics in the human ECG are an important source of information in the diagnosis of atrial conduction pathology. However, diagnosis by visual inspection is a difficult task since the P-wave is relatively small and noise masking is often present. This paper introduces novel wavelet characteristics derived from the continuous wavelet transform (CWT) which are shown to be potentially effective discriminators in an automated diagnostic process. Characteristics of the 12-lead ECG P-wave were derived using CWT and statistical methods. A normal control group and an abnormal (atrial conduction pathology) group were compared. The wavelet characteristics captured frequency, magnitude and variance components of the P-wave. The best individual characteristics (i.e. ones that significantly discriminated the groups) were entered into a linear discriminant analysis (LDA) for four different models: two-lead ECG, three-lead ECG, a derived three-lead ECG and a factor analysis solution consisting of wavelet characteristic loadings on the factors. A comparison was also made between wavelet characteristics derived form individual P-waves verses wavelet characteristics derived from a signal-averaged P-wave for each participant. These wavelet models were also compared to standard cardiological measures of duration, terminal force and duration divided by the PR segment. Results for the individual P-wave approach generally outperformed the standard cardiological measures and the signal-averaged P-wave approach. The best wavelet model on the basis of both classification performance and simplicity was the two-lead model that uses leads II and V1. It was concluded that the wavelet approach of automating classification is worth pursuing with larger samples to validate and extend the present study.
    View less >
    Journal Title
    Computer Methods and Programs in Biomedicine
    Volume
    101
    Issue
    1
    DOI
    https://doi.org/10.1016/j.cmpb.2010.04.012
    Subject
    Biomedical engineering
    Biomedical engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/37508
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander