• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Ordered Mesoporous Carbons Enriched with Nitrogen: Application to Hydrogen Storage

    Author(s)
    Giraudet, Sylvain
    Zhu, Zhonghua
    Yao, Xiangdong
    Lu, Gaoqing
    Griffith University Author(s)
    Yao, Xiangdong
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Nitrogen functional groups were incorporated in ordered mesoporous carbons, and their influence on hydrogen storage was investigated. Two experimental methods were used to dope nitrogen atoms onto and/or into the organic adsorbent. First, a surface treatment using ammonia enabled doping up to 3.9 mass % of nitrogen while preserving a high surface area above 1300 m(2).g(-1). Second, carbon nitrides were synthesized using the hard template method and the reaction of carbon tetrachloride and ethylenediamine. In the latter instance, high contents, around 20 mass %, of nitrogen were obtained whereas the specific surface areas ...
    View more >
    Nitrogen functional groups were incorporated in ordered mesoporous carbons, and their influence on hydrogen storage was investigated. Two experimental methods were used to dope nitrogen atoms onto and/or into the organic adsorbent. First, a surface treatment using ammonia enabled doping up to 3.9 mass % of nitrogen while preserving a high surface area above 1300 m(2).g(-1). Second, carbon nitrides were synthesized using the hard template method and the reaction of carbon tetrachloride and ethylenediamine. In the latter instance, high contents, around 20 mass %, of nitrogen were obtained whereas the specific surface areas reached 630 m(2).g(-1). These materials were fully characterized by nitrogen and carbon dioxide adsorption, X-ray diffraction, X- ray photoelectron spectroscopy, and temperature-programmed desorption. Hydrogen storage in nitrogen-enriched mesoporous carbons was then studied. On one hand, physical adsorption under a wide panel of conditions (temperature, from 77 to 373 K, and pressure) shows that the texture of the adsorbent dominates the storage capability. On the other hand, electrochemical hydrogen storage enables one to store more than 0.5 wt % of hydrogen at ambient pressure and temperature. The nitrogen surface groups are involved in the electrochemical adsorption process, and an irreversible oxidation of these groups may prevent further hydrogen storage.
    View less >
    Journal Title
    The Journal of Physical Chemistry C: Nanomaterials and Interfaces
    Volume
    114
    Issue
    18
    DOI
    https://doi.org/10.1021/jp101119r
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the author[s] for more information.
    Subject
    Chemical sciences
    Solid state chemistry
    Physical properties of materials
    Other environmental sciences not elsewhere classified
    Engineering
    Publication URI
    http://hdl.handle.net/10072/37522
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander