• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of Significant Variables on Compressive Strength of Soil-Fly Ash Geopolymer: Variable Analytical Approach Based on Neural Networks and Genetic Programming

    Thumbnail
    View/Open
    OngPUB5027.pdf (5.495Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Leong, Hsiao Yun
    Ong, Dominic Ek Leong
    Sanjayan, Jay G
    Nazari, Ali
    Kueh, Sze Miang
    Griffith University Author(s)
    Ong, Dominic E.L.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    The identification of significant input variables to the output provides very useful information for mix design for soil-fly ash geopolymer in order to obtain the optimum compressive strength. The importance of input variables to the output of soil-fly ash geopolymer is quantified by Garson’s algorithm and connection weights approach in an artificial neural networks (ANN) model, whereas model analysis and fitness method are used in a genetic programming (GP) model. The former approaches in the ANN model use the connection weights among the input, hidden, and output layers to evaluate the importance of the input variables. ...
    View more >
    The identification of significant input variables to the output provides very useful information for mix design for soil-fly ash geopolymer in order to obtain the optimum compressive strength. The importance of input variables to the output of soil-fly ash geopolymer is quantified by Garson’s algorithm and connection weights approach in an artificial neural networks (ANN) model, whereas model analysis and fitness method are used in a genetic programming (GP) model. The former approaches in the ANN model use the connection weights among the input, hidden, and output layers to evaluate the importance of the input variables. The latter methods in the GP model assess the frequency of variables used in the model and the value of fitness for the evaluation. The assessment results identify the percentages of fly ash, water, and soil as important input variables to the output. The percentage of hydroxide and the ratios of silicate to hydroxide and alkali activator to ash are ranked as less important input variables. The positive or negative relationships between these input variables and the output demonstrate a very significant influence on the strength development of soil-fly ash geopolymer, showing a positive or negative effect on the compressive strength.
    View less >
    Journal Title
    Journal of Materials in Civil Engineering
    Volume
    30
    Issue
    7
    DOI
    https://doi.org/10.1061/(ASCE)MT.1943-5533.0002246
    Copyright Statement
    © 2018 American Society of Civil Engineers (ASCE). This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Civil engineering
    Civil geotechnical engineering
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/375625
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander