• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Impact of highly weathered geology on pipe-jacking forces

    Thumbnail
    View/Open
    OngPUB5023.pdf (2.020Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Choo, Chung Siung
    Ong, Dominic EK Leong
    Griffith University Author(s)
    Ong, Dominic E.L.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    For the Kuching Wastewater Management System Phase 1 project in Kuching, Malaysia, 7·7 km of trunk sewer lines were constructed in the highly fractured, highly weathered Tuang Formation using a pipe-jacking method. The pipelines were founded at depths of up to 35 m below Kuching City, where the majority of the pipe-jacking activities would traverse the Tuang Formation. Jacking forces in highly fractured geology are not well understood as most jacking force models were derived for drives traversing soils. Therefore, a novel method was developed, whereby equivalent rock strength characteristics were interpreted from direct ...
    View more >
    For the Kuching Wastewater Management System Phase 1 project in Kuching, Malaysia, 7·7 km of trunk sewer lines were constructed in the highly fractured, highly weathered Tuang Formation using a pipe-jacking method. The pipelines were founded at depths of up to 35 m below Kuching City, where the majority of the pipe-jacking activities would traverse the Tuang Formation. Jacking forces in highly fractured geology are not well understood as most jacking force models were derived for drives traversing soils. Therefore, a novel method was developed, whereby equivalent rock strength characteristics were interpreted from direct shear testing on reconstituted tunnelling rock spoils. Tangential peak strength parameters, c′t,p and ϕ′t,p , were developed from the nonlinear behaviour of the reconstituted spoils and applied to a well-established jacking model to assess arching and development of jacking forces from four documented drives. The back-analysed parameters μ avg and σ EV were used to demonstrate that geology had significantly affected the development of jacking forces. The back-analysis of the studied drives was successfully validated through finite-element modelling. This research shows that the developed parameters c′t,p and ϕ′t,p and the back-analysed parameters μ avg and σ EV can be reliably used to predict jacking forces in highly fractured, highly weathered geology.
    View less >
    Journal Title
    Geotechnical Research
    Volume
    4
    Issue
    2
    DOI
    https://doi.org/10.1680/jgere.16.00022
    Copyright Statement
    © 2017 Published with permission by the ICE under the CC BY-NC-ND 4.0 License (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited. You may not alter, transform, or build upon this work.
    Subject
    Civil geotechnical engineering
    Publication URI
    http://hdl.handle.net/10072/375785
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander