Show simple item record

dc.contributor.authorBillington, Daviden_US
dc.contributor.authorAntoniou, Grigorisen_US
dc.contributor.authorGovernatori, Guidoen_US
dc.contributor.authorMaher, Michaelen_US
dc.date.accessioned2017-04-24T09:40:27Z
dc.date.available2017-04-24T09:40:27Z
dc.date.issued2010en_US
dc.date.modified2011-03-23T05:44:24Z
dc.identifier.issn1529-3785en_US
dc.identifier.doi10.1145/1838552.1838558en_AU
dc.identifier.urihttp://hdl.handle.net/10072/37582
dc.description.abstractDefeasible reasoning is a computationally simple nonmonotonic reasoning approach that has attracted significant theoretical and practical attention. It comprises a family of logics that capture different intuitions, among them ambiguity propagation versus ambiguity blocking, and the adoption or rejection of team defeat. This article provides a compact presentation of the defeasible logic variants, and derives an inclusion theorem which shows that different notions of provability in defeasible logic form a chain of levels of proof.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_AU
dc.languageEnglishen_US
dc.language.isoen_AU
dc.publisherAssociation for Computing Machinery, Inc.en_US
dc.publisher.placeUnited Statesen_US
dc.relation.ispartofstudentpublicationNen_AU
dc.relation.ispartofpagefrom1en_US
dc.relation.ispartofpageto27en_US
dc.relation.ispartofissue1en_US
dc.relation.ispartofjournalACM Transactions on Computational Logicen_US
dc.relation.ispartofvolume12en_US
dc.rights.retentionYen_AU
dc.subject.fieldofresearchComputation Theory and Mathematics not elsewhere classifieden_US
dc.subject.fieldofresearchcode080299en_US
dc.titleAn inclusion theorem for defeasible logicsen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.facultyGriffith Sciences, School of Information and Communication Technologyen_US
gro.date.issued2010
gro.hasfulltextNo Full Text


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record