Missing value imputation for gene expression data: computational techniques to recover missing data from available information

View/ Open
Author(s)
Liew, Alan Wee-Chung
Law, Ngai-Fong
Yan, Hong
Griffith University Author(s)
Year published
2011
Metadata
Show full item recordAbstract
Microarray gene expression data generally suffers from missing value problem due to a variety of experimental reasons. Since the missing data points can adversely affect downstream analysis, many algorithms have been proposed to impute missing values. In this survey, we provide a comprehensive review of existing missing value imputation algorithms, focusing on their underlying algorithmic techniques and how they utilize local or global information from within the data, or their use of domain knowledge during imputation. In addition, we describe how the imputation results can be validated and the different ways to assess the ...
View more >Microarray gene expression data generally suffers from missing value problem due to a variety of experimental reasons. Since the missing data points can adversely affect downstream analysis, many algorithms have been proposed to impute missing values. In this survey, we provide a comprehensive review of existing missing value imputation algorithms, focusing on their underlying algorithmic techniques and how they utilize local or global information from within the data, or their use of domain knowledge during imputation. In addition, we describe how the imputation results can be validated and the different ways to assess the performance of different imputation algorithms, as well as a discussion on some possible future research directions. It is hoped that this review will give the readers a good understanding of the current development in this field and inspire them to come up with the next generation of imputation algorithms.
View less >
View more >Microarray gene expression data generally suffers from missing value problem due to a variety of experimental reasons. Since the missing data points can adversely affect downstream analysis, many algorithms have been proposed to impute missing values. In this survey, we provide a comprehensive review of existing missing value imputation algorithms, focusing on their underlying algorithmic techniques and how they utilize local or global information from within the data, or their use of domain knowledge during imputation. In addition, we describe how the imputation results can be validated and the different ways to assess the performance of different imputation algorithms, as well as a discussion on some possible future research directions. It is hoped that this review will give the readers a good understanding of the current development in this field and inspire them to come up with the next generation of imputation algorithms.
View less >
Journal Title
Briefings in Bioinformatics
Volume
12
Issue
5
Copyright Statement
© 2011 Oxford University Press. This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Briefings in Bioinformatics following peer review. The definitive publisher-authenticated version: Missing value imputation for gene expression data: computational techniques to recover missing datafrom available information, Briefings in Bioinformatics, Vol.12(5), 2011, pp.498-513 is available online at: http://dx.doi.org/10.1093/bib/bbq080
Subject
Information and Computing Sciences not elsewhere classified
Biochemistry and Cell Biology
Computation Theory and Mathematics
Other Information and Computing Sciences