The influence of wave-, wind- and tide-forced currents on headland sand bypassing - Study case: Santa Catarina Island north shore, Brazil

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
da Silva, Guilherme Vieira
Toldo, Elirio E
Klein, Antonio H da F
Short, Andrew D
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Investigations of headland sand bypassing are still an under-reported subject in the literature. This paper aims to understand the contribution of currents forced by different mechanisms such as tides, winds (i.e. local wind acting over the ocean surface generating currents, without considering wave generation) and waves (as they approach/break on the coast) to headland sand bypassing. The study was carried out in an area comprising a series of seven headlands with varying wave exposure due to changes in shoreline orientation and increasing tidal influence close to a relatively large bay. This paper uses a calibrated and ...
View more >Investigations of headland sand bypassing are still an under-reported subject in the literature. This paper aims to understand the contribution of currents forced by different mechanisms such as tides, winds (i.e. local wind acting over the ocean surface generating currents, without considering wave generation) and waves (as they approach/break on the coast) to headland sand bypassing. The study was carried out in an area comprising a series of seven headlands with varying wave exposure due to changes in shoreline orientation and increasing tidal influence close to a relatively large bay. This paper uses a calibrated and validated process-based model (Delft3D) to simulate a series of scenarios including spring and neap tides during flood and ebb conditions and a range of wind and wave scenarios that encompass both average and extreme conditions. The results indicate that waves are the main driving force for the headland bypassing as they transport sand at rates two orders of magnitude higher than tide- or wind-driven sediment transport. The tide-driven currents can only transport sediment during spring tides in locations where the currents are intensified. It is also demonstrated that the wave direction plays an important role in sediment transport. In exposed areas with larger headlands a combination of wave directions is required to first transport sediment offshore (out of the beach) and secondly to transport sediment alongshore and back to the next beach. Whereas in areas with little variation in wave direction exposure, the same oblique wave direction is responsible for the entire headland bypassing process. This is the first time the contribution of tide-, winds- and wave-generated sediment transport to headland bypassing have been studied.
View less >
View more >Investigations of headland sand bypassing are still an under-reported subject in the literature. This paper aims to understand the contribution of currents forced by different mechanisms such as tides, winds (i.e. local wind acting over the ocean surface generating currents, without considering wave generation) and waves (as they approach/break on the coast) to headland sand bypassing. The study was carried out in an area comprising a series of seven headlands with varying wave exposure due to changes in shoreline orientation and increasing tidal influence close to a relatively large bay. This paper uses a calibrated and validated process-based model (Delft3D) to simulate a series of scenarios including spring and neap tides during flood and ebb conditions and a range of wind and wave scenarios that encompass both average and extreme conditions. The results indicate that waves are the main driving force for the headland bypassing as they transport sand at rates two orders of magnitude higher than tide- or wind-driven sediment transport. The tide-driven currents can only transport sediment during spring tides in locations where the currents are intensified. It is also demonstrated that the wave direction plays an important role in sediment transport. In exposed areas with larger headlands a combination of wave directions is required to first transport sediment offshore (out of the beach) and secondly to transport sediment alongshore and back to the next beach. Whereas in areas with little variation in wave direction exposure, the same oblique wave direction is responsible for the entire headland bypassing process. This is the first time the contribution of tide-, winds- and wave-generated sediment transport to headland bypassing have been studied.
View less >
Journal Title
Geomorphology
Volume
312
Copyright Statement
© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Geology
Marine geoscience
Physical geography and environmental geoscience