Defining the distinct, intrinsic properties of the novel type I interferon, IFNe

View/ Open
File version
Version of Record (VoR)
Author(s)
Stifter, Sebastian A
Matthews, Antony Y
Mangan, Niamh E
Fung, Ka Yee
Drew, Alexander
Tate, Michelle D
da Costa, Tatiana P Soares
Hampsey, Daniel
Mayall, Jemma
Hansbro, Phil M
Minambres, Albert Garcia
Eid, Sahar G
Mak, Johnson
Scoble, Judy
Lovrecz, George
deWeerd, Nicole A
Hertzog, Paul J
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
The type I interferons (IFNs) are a family of cytokines with diverse biological activities, including antiviral, antiproliferative, and immunoregulatory functions. The discovery of the hormonally regulated, constitutively expressed IFNϵ has suggested a function for IFNs in reproductive tract homeostasis and protection from infections, but its intrinsic activities are untested. We report here the expression, purification, and functional characterization of murine IFNϵ (mIFNϵ). Recombinant mIFNϵ (rmIFNϵ) exhibited an α-helical fold characteristic of type I IFNs and bound to IFNα/β receptor 1 (IFNAR1) and IFNAR2, but, unusually, ...
View more >The type I interferons (IFNs) are a family of cytokines with diverse biological activities, including antiviral, antiproliferative, and immunoregulatory functions. The discovery of the hormonally regulated, constitutively expressed IFNϵ has suggested a function for IFNs in reproductive tract homeostasis and protection from infections, but its intrinsic activities are untested. We report here the expression, purification, and functional characterization of murine IFNϵ (mIFNϵ). Recombinant mIFNϵ (rmIFNϵ) exhibited an α-helical fold characteristic of type I IFNs and bound to IFNα/β receptor 1 (IFNAR1) and IFNAR2, but, unusually, it had a preference for IFNAR1. Nevertheless, rmIFNϵ induced typical type I IFN signaling activity, including STAT1 phosphorylation and activation of canonical type I IFN signaling reporters, demonstrating that it uses the JAK–STAT signaling pathway. We also found that rmIFNϵ induces the activation of T, B, and NK cells and exhibits antiviral, antiproliferative, and antibacterial activities typical of type I IFNs, albeit with 100–1000-fold reduced potency compared with rmIFNα1 and rmIFNβ. Surprisingly, although the type I IFNs generally do not display cross-species activities, rmIFNϵ exhibited high antiviral activity on human cells, suppressing HIV replication and inducing the expression of known HIV restriction factors in human lymphocytes. Our findings define the intrinsic properties of murine IFNϵ, indicating that it distinctly interacts with IFNAR and elicits pathogen-suppressing activity with a potency enabling host defense but with limited toxicity, appropriate for a protein expressed constitutively in a sensitive mucosal site, such as the reproductive tract.
View less >
View more >The type I interferons (IFNs) are a family of cytokines with diverse biological activities, including antiviral, antiproliferative, and immunoregulatory functions. The discovery of the hormonally regulated, constitutively expressed IFNϵ has suggested a function for IFNs in reproductive tract homeostasis and protection from infections, but its intrinsic activities are untested. We report here the expression, purification, and functional characterization of murine IFNϵ (mIFNϵ). Recombinant mIFNϵ (rmIFNϵ) exhibited an α-helical fold characteristic of type I IFNs and bound to IFNα/β receptor 1 (IFNAR1) and IFNAR2, but, unusually, it had a preference for IFNAR1. Nevertheless, rmIFNϵ induced typical type I IFN signaling activity, including STAT1 phosphorylation and activation of canonical type I IFN signaling reporters, demonstrating that it uses the JAK–STAT signaling pathway. We also found that rmIFNϵ induces the activation of T, B, and NK cells and exhibits antiviral, antiproliferative, and antibacterial activities typical of type I IFNs, albeit with 100–1000-fold reduced potency compared with rmIFNα1 and rmIFNβ. Surprisingly, although the type I IFNs generally do not display cross-species activities, rmIFNϵ exhibited high antiviral activity on human cells, suppressing HIV replication and inducing the expression of known HIV restriction factors in human lymphocytes. Our findings define the intrinsic properties of murine IFNϵ, indicating that it distinctly interacts with IFNAR and elicits pathogen-suppressing activity with a potency enabling host defense but with limited toxicity, appropriate for a protein expressed constitutively in a sensitive mucosal site, such as the reproductive tract.
View less >
Journal Title
Journal of Biological Chemistry
Volume
293
Issue
9
Copyright Statement
© This research was originally published in Journal of Biological Chemistry (JBC). Stifter, Mathews & Mangan et al. Defining the distinct, intrinsic properties of the novel type I interferon, IFNe, Journal of Biological Chemistry (JBC) Vol 293(9) pp. 3168-3179, 2018. Copyright the American Society for Biochemistry and Molecular Biology. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive version.
Subject
Chemical sciences
Biological sciences
Other biological sciences not elsewhere classified
Biomedical and clinical sciences