• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Efficient Data Mining Method to Localise Errors in RFID Data

    Thumbnail
    View/Open
    67570_1.pdf (273.0Kb)
    Author(s)
    Stantic, Bela
    Chang, Mei-Lin
    Griffith University Author(s)
    Stantic, Bela
    Chang, Mei-Lin
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Since the emergence of Radio Frequency Identi?cation technology (RFID), the community has been promised a cost effective and ef?cient means to identify and track large number of items with relative ease. Unfortunately, due to the unreliable nature of the passive architecture, the RFID revolution has been reduced to a fraction of intended audience due to the anomalies. These anomalies are duplicate, positive and negative readings. While duplicate readings and wrong data (false positive) can be easily identi?ed and recti?ed, that is not the case for false negative or missed readings. To identify missed readings data mining ...
    View more >
    Since the emergence of Radio Frequency Identi?cation technology (RFID), the community has been promised a cost effective and ef?cient means to identify and track large number of items with relative ease. Unfortunately, due to the unreliable nature of the passive architecture, the RFID revolution has been reduced to a fraction of intended audience due to the anomalies. These anomalies are duplicate, positive and negative readings. While duplicate readings and wrong data (false positive) can be easily identi?ed and recti?ed, that is not the case for false negative or missed readings. To identify missed readings data mining methods can be used. However, due to its vast volume and complex spatio-temporal structure of RFID data, traditional data mining methods are not necessarily directly applicable. In this paper we propose method to identify possible missed RFID readings by applying association rules data mining method. In empirical study we show that our algorithm is accurate and ef?cient and also we show that it scales well with increased number of rows therefore it is applicable on vast volume on spatio-temporal RFID data.
    View less >
    Conference Title
    Tenth IASTED International Conference on Artificial Intelligence in Applications
    Publisher URI
    http://www.iasted.org/conferences/pastinfo-674.html
    Copyright Statement
    © 2010 IASTED and ACTA Press. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the conference's website for access to the definitive, published version.
    Subject
    Data Format not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/37711
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander