• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Sound and Complete Landmarks for And/Or Graphs

    Thumbnail
    View/Open
    67796_1.pdf (317.6Kb)
    Author(s)
    Keyder, Emil
    Richter, Silvia
    Helmert, Malte
    Griffith University Author(s)
    Richter, Silvia
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Landmarks for a planning problem are subgoals that are necessarily made true at some point in the execution of any plan. Since verifying that a fact is a landmark is PSPACE-complete, earlier approaches have focused on finding landmarks for the delete relaxation ?+. Furthermore, some of these approaches have approximated this set of landmarks, although it has been shown that the complete set of causal delete-relaxation landmarks can be identified in polynomial time by a simple procedure over the relaxed planning graph. Here, we give a declarative characterisation of this set of landmarks and show that the procedure computes ...
    View more >
    Landmarks for a planning problem are subgoals that are necessarily made true at some point in the execution of any plan. Since verifying that a fact is a landmark is PSPACE-complete, earlier approaches have focused on finding landmarks for the delete relaxation ?+. Furthermore, some of these approaches have approximated this set of landmarks, although it has been shown that the complete set of causal delete-relaxation landmarks can be identified in polynomial time by a simple procedure over the relaxed planning graph. Here, we give a declarative characterisation of this set of landmarks and show that the procedure computes the landmarks described by our characterisation. Building on this, we observe that the procedure can be applied to any delete-relaxation problem and take advantage of a recent compilation of the m-relaxation of a problem into a problem with no delete effects to extract landmarks that take into account delete effects in the original problem. We demonstrate that this approach finds strictly more causal landmarks than previous approaches and discuss the relationship between increased computational effort and experimental performance, using these landmarks in a recently proposed admissible landmark-counting heuristic.
    View less >
    Conference Title
    ECAI 2010 - 19th European Conference on Artificial Intelligence
    DOI
    https://doi.org/10.3233/978-1-60750-606-5-335
    Copyright Statement
    © 2010 IOS Press. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the publisher website for access to the definitive, published version.
    Subject
    Artificial Intelligence and Image Processing not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/37746
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander