• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Exercise, Osteoporosis, and Bone Geometry

    Thumbnail
    View/Open
    HardingPUB5244.pdf (233.4Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Harding, Amy T
    Beck, Belinda R
    Griffith University Author(s)
    Beck, Belinda R.
    Harding, Amy
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Exercise is commonly recommended in the prevention and management of osteoporosis. The most common method to monitor bone mass and its response to interventions is bone densitometry. While closely associated with risk of fracture, densitometry-derived areal bone mineral density (aBMD) does not provide a reliable indication of bone geometry or morphological adaptation to stimuli. In fact, the effects of exercise interventions on aBMD are frequently modest, and may not fully represent the benefit of exercise to bone. Animal models suggest that mechanical loading indeed influences bone geometry and thus strength. Such an effect ...
    View more >
    Exercise is commonly recommended in the prevention and management of osteoporosis. The most common method to monitor bone mass and its response to interventions is bone densitometry. While closely associated with risk of fracture, densitometry-derived areal bone mineral density (aBMD) does not provide a reliable indication of bone geometry or morphological adaptation to stimuli. In fact, the effects of exercise interventions on aBMD are frequently modest, and may not fully represent the benefit of exercise to bone. Animal models suggest that mechanical loading indeed influences bone geometry and thus strength. Such an effect in humans has the potential to reduce osteoporotic fracture. The aim of the current narrative review is to provide an overview of what is known about the effects of exercise on bone geometry, with a focus on relevance to osteoporosis.
    View less >
    Journal Title
    Sports
    Volume
    5
    Issue
    2
    DOI
    https://doi.org/10.3390/sports5020029
    Copyright Statement
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
    Subject
    Sports science and exercise
    Exercise physiology
    Biomedical engineering
    Publication URI
    http://hdl.handle.net/10072/378223
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander