Free Ammonia-Based Pretreatment Promotes Short-Chain Fatty Acid Production from Waste Activated Sludge
Author(s)
Zhang, Chang
Qin, Yuge
Xu, Qiuxiang
Liu, Xuran
Liu, Yiwen
Ni, Bing-Jie
Yang, Qi
Wang, Dongbo
Li, Xiaoming
Wang, Qilin
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
This work reports a new waste activated sludge (WAS) pretreatment method based on free ammonia (FA) for promoting the generation of short-chain fatty acids (SCFAs). Experimental results showed that pretreatment of WAS for 3 days with FA largely improved WAS disintegration, with the highest dissolution (soluble chemical oxygen demand (COD), 3400 ± 120 mg/L at initial FA level of 237.8 mg/L) being 4.5-fold that without FA pretreatment. The pretreatment method by FA facilitated the breakdown of extracellular polymeric substances and cell envelope of sludge cells and killed more live microbial cells, which thereby accelerated ...
View more >This work reports a new waste activated sludge (WAS) pretreatment method based on free ammonia (FA) for promoting the generation of short-chain fatty acids (SCFAs). Experimental results showed that pretreatment of WAS for 3 days with FA largely improved WAS disintegration, with the highest dissolution (soluble chemical oxygen demand (COD), 3400 ± 120 mg/L at initial FA level of 237.8 mg/L) being 4.5-fold that without FA pretreatment. The pretreatment method by FA facilitated the breakdown of extracellular polymeric substances and cell envelope of sludge cells and killed more live microbial cells, which thereby accelerated the dissolution of substances from WAS. It was also found that FA severely suppressed the SCFA consumption process, but the acetogenesis process was unaffected. Although FA also inhibited hydrolysis, acidogenesis, and homoacetogenesis to some extent, the inhibitions did not largely affect the biodegradation of the relevant substances at all the tested FA levels. Finally, using FA to pretreat WAS for SCFA enhancement was confirmed. When FA concentrations ranged from 53.5 to 176.5 mg/L, the maximum generation of SCFA was enhanced from 196.8 to 267.2 mg COD/g VSS, which was 2.3–3.2 times that of the blank. Further FA leveling (237.8 mg/L) caused a slight decline of maximum SCFA generation (226.9 mg COD/g VSS). The findings reported may instruct engineers to develop an economic and effective strategy to enhance SCFA production, which might support the operation of wastewater treatment plants in sustainable paradigms with low energy input in the future.
View less >
View more >This work reports a new waste activated sludge (WAS) pretreatment method based on free ammonia (FA) for promoting the generation of short-chain fatty acids (SCFAs). Experimental results showed that pretreatment of WAS for 3 days with FA largely improved WAS disintegration, with the highest dissolution (soluble chemical oxygen demand (COD), 3400 ± 120 mg/L at initial FA level of 237.8 mg/L) being 4.5-fold that without FA pretreatment. The pretreatment method by FA facilitated the breakdown of extracellular polymeric substances and cell envelope of sludge cells and killed more live microbial cells, which thereby accelerated the dissolution of substances from WAS. It was also found that FA severely suppressed the SCFA consumption process, but the acetogenesis process was unaffected. Although FA also inhibited hydrolysis, acidogenesis, and homoacetogenesis to some extent, the inhibitions did not largely affect the biodegradation of the relevant substances at all the tested FA levels. Finally, using FA to pretreat WAS for SCFA enhancement was confirmed. When FA concentrations ranged from 53.5 to 176.5 mg/L, the maximum generation of SCFA was enhanced from 196.8 to 267.2 mg COD/g VSS, which was 2.3–3.2 times that of the blank. Further FA leveling (237.8 mg/L) caused a slight decline of maximum SCFA generation (226.9 mg COD/g VSS). The findings reported may instruct engineers to develop an economic and effective strategy to enhance SCFA production, which might support the operation of wastewater treatment plants in sustainable paradigms with low energy input in the future.
View less >
Journal Title
ACS Sustainable Chemistry & Engineering
Volume
6
Issue
7
Subject
Analytical chemistry
Chemical engineering
Environmentally sustainable engineering
Global and planetary environmental engineering
Pollution and contamination