• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Free Ammonia-Based Pretreatment Promotes Short-Chain Fatty Acid Production from Waste Activated Sludge

    Author(s)
    Zhang, Chang
    Qin, Yuge
    Xu, Qiuxiang
    Liu, Xuran
    Liu, Yiwen
    Ni, Bing-Jie
    Yang, Qi
    Wang, Dongbo
    Li, Xiaoming
    Wang, Qilin
    Griffith University Author(s)
    Wang, Qilin
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    This work reports a new waste activated sludge (WAS) pretreatment method based on free ammonia (FA) for promoting the generation of short-chain fatty acids (SCFAs). Experimental results showed that pretreatment of WAS for 3 days with FA largely improved WAS disintegration, with the highest dissolution (soluble chemical oxygen demand (COD), 3400 ± 120 mg/L at initial FA level of 237.8 mg/L) being 4.5-fold that without FA pretreatment. The pretreatment method by FA facilitated the breakdown of extracellular polymeric substances and cell envelope of sludge cells and killed more live microbial cells, which thereby accelerated ...
    View more >
    This work reports a new waste activated sludge (WAS) pretreatment method based on free ammonia (FA) for promoting the generation of short-chain fatty acids (SCFAs). Experimental results showed that pretreatment of WAS for 3 days with FA largely improved WAS disintegration, with the highest dissolution (soluble chemical oxygen demand (COD), 3400 ± 120 mg/L at initial FA level of 237.8 mg/L) being 4.5-fold that without FA pretreatment. The pretreatment method by FA facilitated the breakdown of extracellular polymeric substances and cell envelope of sludge cells and killed more live microbial cells, which thereby accelerated the dissolution of substances from WAS. It was also found that FA severely suppressed the SCFA consumption process, but the acetogenesis process was unaffected. Although FA also inhibited hydrolysis, acidogenesis, and homoacetogenesis to some extent, the inhibitions did not largely affect the biodegradation of the relevant substances at all the tested FA levels. Finally, using FA to pretreat WAS for SCFA enhancement was confirmed. When FA concentrations ranged from 53.5 to 176.5 mg/L, the maximum generation of SCFA was enhanced from 196.8 to 267.2 mg COD/g VSS, which was 2.3–3.2 times that of the blank. Further FA leveling (237.8 mg/L) caused a slight decline of maximum SCFA generation (226.9 mg COD/g VSS). The findings reported may instruct engineers to develop an economic and effective strategy to enhance SCFA production, which might support the operation of wastewater treatment plants in sustainable paradigms with low energy input in the future.
    View less >
    Journal Title
    ACS Sustainable Chemistry & Engineering
    Volume
    6
    Issue
    7
    DOI
    https://doi.org/10.1021/acssuschemeng.8b01452
    Subject
    Analytical chemistry
    Chemical engineering
    Environmentally sustainable engineering
    Global and planetary environmental engineering
    Pollution and contamination
    Publication URI
    http://hdl.handle.net/10072/378294
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander