Show simple item record

dc.contributor.authorNdehedehe, Christopher E
dc.contributor.authorAgutu, Nathan O
dc.contributor.authorOkwuashi, Onuwa
dc.contributor.authorFerreira, Vagner G
dc.date.accessioned2018-07-15T23:33:38Z
dc.date.available2018-07-15T23:33:38Z
dc.date.issued2016
dc.identifier.issn0022-1694
dc.identifier.doi10.1016/j.jhydrol.2016.05.068
dc.identifier.urihttp://hdl.handle.net/10072/378528
dc.description.abstractLake Chad has recently been perceived to be completely desiccated and almost extinct due to insufficient published ground observations. Given the high spatial variability of rainfall in the region, and the fact that extreme climatic conditions (for example, droughts) could be intensifying in the Lake Chad basin (LCB) due to human activities, a spatio-temporal approach to drought analysis becomes essential. This study employed independent component analysis (ICA), a fourth-order cumulant statistics, to decompose standardised precipitation index (SPI), standardised soil moisture index (SSI), and terrestrial water storage (TWS) derived from Gravity Recovery and Climate Experiment (GRACE) into spatial and temporal patterns over the LCB. In addition, this study uses satellite altimetry data to estimate variations in the Lake Chad water levels, and further employs relevant climate teleconnection indices (El-Niño Southern Oscillation-ENSO, Atlantic Multi-decadal Oscillation-AMO, and Atlantic Meridional Mode-AMM) to examine their links to the observed drought temporal patterns over the basin. From the spatio-temporal drought analysis, temporal evolutions of SPI at 12 month aggregation show relatively wet conditions in the last two decades (although with marked alterations) with the 2012–2014 period being the wettest. In addition to the improved rainfall conditions during this period, there was a statistically significant increase of 0.04 m/yr in altimetry water levels observed over Lake Chad between 2008 and 2014, which confirms a shift in the hydrological conditions of the basin. Observed trend in TWS changes during the 2002–2014 period shows a statistically insignificant increase of 3.0 mm/yr at the centre of the basin, coinciding with soil moisture deficit indicated by the temporal evolutions of SSI at all monthly accumulations during the 2002–2003 and 2009–2012 periods. Further, SPI at 3 and 6 month scales indicated fluctuating drought conditions at the extreme south of the basin, coinciding with a statistically insignificant decline in TWS of about 4.5 mm/yr at the southern catchment of the basin. Finally, correlation analyses indicate that ENSO, AMO, and AMM are associated with extreme rainfall conditions in the basin, with AMO showing the strongest association (statistically significant correlation of 0.55) with SPI 12 month aggregation. Therefore, this study provides a framework that will support drought monitoring in the LCB.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofpagefrom106
dc.relation.ispartofpageto128
dc.relation.ispartofjournalJournal of Hydrology
dc.relation.ispartofvolume540
dc.subject.fieldofresearchAtmospheric Sciences not elsewhere classified
dc.subject.fieldofresearchcode040199
dc.titleSpatio-temporal variability of droughts and terrestrial water storage over Lake Chad Basin using independent component analysis
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
dcterms.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.description.versionAccepted Manuscript (AM)
gro.rights.copyright© 2016 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
gro.hasfulltextFull Text
gro.griffith.authorNdehedehe, Christopher E.


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record