• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Highly Porous FeS/Carbon Fibers Derived from Fe-Carrageenan Biomass: High-capacity and Durable Anodes for Sodium-Ion Batteries

    Author(s)
    Li, Daohao
    Sun, Yuanyuan
    Chen, Shuai
    Yao, Jiuyong
    Zhang, Yuhui
    Xia, Yanzhi
    Yang, Dongjiang
    Griffith University Author(s)
    Yang, Dongjiang
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    The nanostructured metal sulfides have been reported as promising anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities but have suffered from the unsatisfactory electronic conductivity and poor structural stability during a charge/discharge process, thus limiting their applications. Herein, the one-dimensional (1D) porous FeS/carbon fibers (FeS/CFs) micro/nanostructures are fabricated through facile pyrolysis of double-helix-structured Fe-carrageenan fibers. The FeS nanoparticles are in situ formed by interacting with sulfur-containing group of natural material ι-carrageenan and uniformly ...
    View more >
    The nanostructured metal sulfides have been reported as promising anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities but have suffered from the unsatisfactory electronic conductivity and poor structural stability during a charge/discharge process, thus limiting their applications. Herein, the one-dimensional (1D) porous FeS/carbon fibers (FeS/CFs) micro/nanostructures are fabricated through facile pyrolysis of double-helix-structured Fe-carrageenan fibers. The FeS nanoparticles are in situ formed by interacting with sulfur-containing group of natural material ι-carrageenan and uniformly embedded in the unique 1D porous carbon fibrous matrix, significantly enhancing the sodium-ion storage performance. The obtained FeS/CFs with optimized sodium storage performance benefits from the appropriate carbon content (20.9 wt %). The composite exhibits high capacity and excellent cycling stability (283 mAh g–1 at current density of 1 A g–1 after 400 cycles) and rate performance (247 mAh g–1 at 5 A g–1). This work provides a simple strategy to construct 1D porous FeS/CFs micro/nanostructures as high-performance anode materials for SIBs via a unique sustainable and environmentally friendly way.
    View less >
    Journal Title
    ACS Applied Materials and Interfaces
    Volume
    10
    Issue
    20
    DOI
    https://doi.org/10.1021/acsami.8b03059
    Subject
    Chemical sciences
    Other chemical sciences not elsewhere classified
    Engineering
    Publication URI
    http://hdl.handle.net/10072/378711
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander