• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models

    Thumbnail
    View/Open
    69037_1.pdf (665.3Kb)
    Author(s)
    Winger, Moritz
    Trzesniak, Daniel
    Baron, Riccardo
    F. van Gunsteren, Wilfred
    Griffith University Author(s)
    Winger, Moritz
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    The use of a coarse-grained (CG) model that is widely used in molecular dynamics simulations of biomolecular systems is investigated with respect to the dependence of a variety of quantities upon the size of the used integration time step and cutoff radius. The results suggest that when using a non-bonded interaction-cutoff radius of 1.4 nm a time step of maximally 10 fs should be used, in order not to produce energy sinks or wells. Using a too-large time step, e.g. 50 fs with a cutoff of 1.2 nm, as is done in the coarse-grained model of Marrink et al. (J. Phys. Chem. B, 2004, 108, 250 and 2007, 111, 7812), induces errors ...
    View more >
    The use of a coarse-grained (CG) model that is widely used in molecular dynamics simulations of biomolecular systems is investigated with respect to the dependence of a variety of quantities upon the size of the used integration time step and cutoff radius. The results suggest that when using a non-bonded interaction-cutoff radius of 1.4 nm a time step of maximally 10 fs should be used, in order not to produce energy sinks or wells. Using a too-large time step, e.g. 50 fs with a cutoff of 1.2 nm, as is done in the coarse-grained model of Marrink et al. (J. Phys. Chem. B, 2004, 108, 250 and 2007, 111, 7812), induces errors due to the linear approximation of the integrators that are commonly used to integrate the equations of motion. As a spin-off of the investigation of the mentioned CG models, we found that the parameters of the CG water model place it at physiological temperatures well into the solid phase of the phase diagram.
    View less >
    Journal Title
    Physical Chemistry Chemical Physics
    Volume
    11
    Issue
    12
    DOI
    https://doi.org/10.1039/B818713D
    Copyright Statement
    © 2009 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Bioinformatics Software
    Physical Sciences
    Chemical Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/37892
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander