Hybrid optimizers to solve a tri-level programming model for a tire closed-loop supply chain network design problem

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Fathollahi-Fard, Amir Mohammad
Hajiaghaei-Keshteli, Mostafa
Mirjalili, Seyedali
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
The Closed-loop Supply Chain (CLSC) is one way to collect and recycle scraped tires. CLSC consists of a set of suppliers, manufacturers, distributors and customers in a forward system. Collectors and recyclers are formed a reverse one as well. The decisions in such systems are adopted in a hierarchy. Regarding this issue, this study develops a tri-level programming model to design the location-allocation of the tire CLSC for the first time. The proposed model is formulated on the static Stackelberg game between manufacturers, distributors and collectors in the framework of CLSC. The performance of the current exact solutions ...
View more >The Closed-loop Supply Chain (CLSC) is one way to collect and recycle scraped tires. CLSC consists of a set of suppliers, manufacturers, distributors and customers in a forward system. Collectors and recyclers are formed a reverse one as well. The decisions in such systems are adopted in a hierarchy. Regarding this issue, this study develops a tri-level programming model to design the location-allocation of the tire CLSC for the first time. The proposed model is formulated on the static Stackelberg game between manufacturers, distributors and collectors in the framework of CLSC. The performance of the current exact solutions for this problem suffers from degraded performance when solving large-scale problems. To alleviate this drawback, this study proposes a number of new hybrid optimizers by considering the benefits of recent metaheuristics. An extensive comparative study confirms the efficiency of developed model and the performance of the hybrid optimizers proposed when solving the large-scale problems.
View less >
View more >The Closed-loop Supply Chain (CLSC) is one way to collect and recycle scraped tires. CLSC consists of a set of suppliers, manufacturers, distributors and customers in a forward system. Collectors and recyclers are formed a reverse one as well. The decisions in such systems are adopted in a hierarchy. Regarding this issue, this study develops a tri-level programming model to design the location-allocation of the tire CLSC for the first time. The proposed model is formulated on the static Stackelberg game between manufacturers, distributors and collectors in the framework of CLSC. The performance of the current exact solutions for this problem suffers from degraded performance when solving large-scale problems. To alleviate this drawback, this study proposes a number of new hybrid optimizers by considering the benefits of recent metaheuristics. An extensive comparative study confirms the efficiency of developed model and the performance of the hybrid optimizers proposed when solving the large-scale problems.
View less >
Journal Title
Applied Soft Computing
Volume
70
Copyright Statement
© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Artificial intelligence
Applied mathematics